Вспоминаем, что такое синус, косинус и тангенс в прямоугольном треугольнике.

 Таким образом, синус и косинус задействуют гипотенузу, а тангенс - только катеты. Синус равен отношению противолежащего катета к гипотенузе; косинус - прилежащего к гипотенузе; тангенс - противолежащего катета к прилежащему.

Если на ОГЭ вы от волнения забудете, как находить косинус, синус и тангенс, загляните в справочные материалы на ваших листах с заданиями, там будут подсказки (в разделе геометрии).

В открытом банке заданий ФИПИ есть следующие задачи на эту тему, которые могут вам попасться на реальном экзамене в этом году.

Задания из банка ФИПИ с sin, cos, tg

Найти катет по известному синусу угла и гипотенузе

В треугольнике ABC угол C равен 90°, sinB=4/15, AB=45. Найдите AC.

Решение:


По определению синуса:
sinB=AC/AB
AC=AB*sinB=45*4/15=12

Ответ: 12

D8213E

В треугольнике ABC угол C равен 90°, sinB=7/12, AB=48. Найдите AC.

Решение:


По определению синуса:
sinB=AC/AB
AC=AB*sinB=48*7/12=28

Ответ: 28

B972FB

В треугольнике ABC угол C равен 90°, sinB=4/11, AB=55. Найдите AC.

Решение:


По определению синуса:
sinB=AC/AB
AC=AB*sinB=55*4/11=20

Ответ: 20

E65720

В треугольнике ABC угол C равен 90°, sinB=5/17, AB=51. Найдите AC.

Решение:


По определению синуса:
sinB=AC/AB
AC=AB*sinB=51*5/17=15

Ответ: 15

D893F0

В треугольнике ABC угол C равен 90°, sinB=3/7, AB=21. Найдите AC.

Решение:


По определению синуса:
sinB=AC/AB
AC=AB*sinB=21*3/7=9

Ответ: 9

6544F6

В треугольнике ABC угол C равен 90°, sinB=4/9, AB=18. Найдите AC.

Решение:


По определению синуса:
sinB=AC/AB
AC=AB*sinB=18*4/9=8

Ответ: 8

F6882F

В треугольнике ABC угол C равен 90°, sinB=5/8, AB=16. Найдите AC.

Решение:


По определению синуса:
sinB=AC/AB
AC=AB*sinB=16*5/8=10

Ответ: 10

564758

В треугольнике ABC угол C равен 90°, sinB=3/5, AB=10. Найдите AC.

Решение:


По определению синуса:
sinB=AC/AB
AC=AB*sinB=10*3/5=6

Ответ: 6

50A4DC

В треугольнике ABC угол C равен 90°, sinB=5/16, AB=80. Найдите AC.

Решение:


По определению синуса:
sinB=AC/AB
AC=AB*sinB=80*5/16=25

Ответ: 25

3D5005

В треугольнике ABC угол C равен 90°, sinB=7/20, AB=40. Найдите AC.

Решение:


По определению синуса:
sinB=AC/AB
AC=AB*sinB=40*7/20=14

Ответ: 14

14A018

 

Найти катет по известному косинусу и гипотенузе

В треугольнике ABC угол C равен 90°, cosB=2/5, AB=10. Найдите BC.

Решение:


По определению косинуса:
cosB=BC/AB
BC=АВ*cosB=10*2/5=4

Ответ: 4

1B8713

В треугольнике ABC угол C равен 90°, cosB=5/6, AB=18. Найдите BC.

Решение:


По определению косинуса:
cosB=BC/AB
BC=АВ*cosB=18*5/6=15

Ответ: 15

481278

В треугольнике ABC угол C равен 90°, cosB=4/7, AB=21. Найдите BC.

Решение:


По определению косинуса:
cosB=BC/AB
BC=АВ*cosB=21*4/7=12

Ответ: 12

D4E48F

В треугольнике ABC угол C равен 90°, cosB=3/8, AB=64. Найдите BC.

Решение:


По определению косинуса:
cosB=BC/AB
BC=АВ*cosB=64*3/8=24

Ответ: 24

3F99AC

В треугольнике ABC угол C равен 90°, cosB=7/9, AB=54. Найдите BC.

Решение:


По определению косинуса:
cosB=BC/AB
BC=АВ*cosB=54*7/9=42

Ответ: 42

915280

В треугольнике ABC угол C равен 90°, cosB=9/10, AB=60. Найдите BC.

Решение:


По определению косинуса:
cosB=BC/AB
BC=АВ*cosB=60*9/10=54

Ответ: 54

56F660

В треугольнике ABC угол C равен 90°, cosB=5/12, AB=60. Найдите BC.

Решение:


По определению косинуса:
cosB=BC/AB
BC=АВ*cosB=60*5/12=25

Ответ: 25

CA8E29

В треугольнике ABC угол C равен 90°, cosB=9/14, AB=42. Найдите BC.

Решение:


По определению косинуса:
cosB=BC/AB
BC=АВ*cosB=42*9/14=27

Ответ: 27

52D8C1

В треугольнике ABC угол C равен 90°, cosB=11/15, AB=75. Найдите BC.

Решение:


По определению косинуса:
cosB=BC/AB
BC=АВ*cosB=75*11/15=55

Ответ: 55

73E3A7

В треугольнике ABC угол C равен 90°, cosB=13/16, AB=96. Найдите BC.

Решение:


По определению косинуса:
cosB=BC/AB
BC=АВ*cosB=96*13/16=78

Ответ: 78

D8738D

Найти катет по известному катету и тангенсу

 

В треугольнике ABC угол C равен 90°, tgB=3/4, BC=12. Найдите AC.

Решение:


По определению тангенса:
tgB=AC/BC
AC=BC*tgB=12*3/4=9

Ответ: 9

08FD08

В треугольнике ABC угол C равен 90°, tgB=7/6, BC=18. Найдите AC.

Решение:


По определению тангенса:
tgB=AC/BC
AC=BC*tgB=18*7/6=21

Ответ: 21

1BBB13

В треугольнике ABC угол C равен 90°, tgB=9/7, BC=42. Найдите AC.

Решение:


По определению тангенса:
tgB=AC/BC
AC=BC*tgB=42*9/7=54

Ответ: 54

14C45C

В треугольнике ABC угол C равен 90°, tgB=8/5, BC=20. Найдите AC.

Решение:


По определению тангенса:
tgB=AC/BC
AC=BC*tgB=20*8/5=32

Ответ: 32

1DB806

В треугольнике ABC угол C равен 90°, tgB=11/8, BC=24. Найдите AC.

Решение:


По определению тангенса:
tgB=AC/BC
AC=BC*tgB=24*11/8=33

Ответ: 33

EF04D8

В треугольнике ABC угол C равен 90°, tgB=5/9, BC=27. Найдите AC.

Решение:


По определению тангенса:
tgB=AC/BC
AC=BC*tgB=27*5/9=15

Ответ: 15

A915AF

В треугольнике ABC угол C равен 90°, tgB=7/12, BC=48. Найдите AC.

Решение:


По определению тангенса:
tgB=AC/BC
AC=BC*tgB=48*7/12=28

Ответ: 28

48CB65

В треугольнике ABC угол C равен 90°, tgB=4/7, BC=35. Найдите AC.

Решение:


По определению тангенса:
tgB=AC/BC
AC=BC*tgB=35*4/7=20

Ответ: 20

1EB6B0

В треугольнике ABC угол C равен 90°, tgB=7/4, BC=36. Найдите AC.

Решение:


По определению тангенса:
tgB=AC/BC
AC=BC*tgB=36*7/4=63

Ответ: 63

93C176

В треугольнике ABC угол C равен 90°, tgB=3/5, BC=30. Найдите AC.

Решение:


По определению тангенса:
tgB=AC/BC
AC=BC*tgB=30*3/5=18

Ответ: 18

757BB5

Найти синус по косинусу и наоборот

В решении заданий такого типа используйте основное тригонометрическое тождество

sin2α + cos2α=1

Выражаем то, что нужно найти, и подставляем известные значения.

Синус острого угла А треугольника АВС равен $\frac{\sqrt{21}}5$. Найдите cosA.

Решение:


Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
cos2A = 1 - sin2A =1 - (21/5)= 1 - 21/25 = 1 - 0,84 = 0,16
cosA = 0,4

Ответ: 0,4

99B7F9

Синус острого угла А треугольника АВС равен $\frac{3\sqrt{11}}{10}$. Найдите  cosA.

Решение:


Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
cos2A = 1 - sin2A =1 - (3√11/10)= 1 - 99/100 = 0,01
cosA = 0,1

Ответ: 0,1

E52F99

Синус острого угла А треугольника АВС равен $\frac{\sqrt{91}}{10}$. Найдите  cosA.

Решение:


Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
cos2A = 1 - sin2A =1 - (91/10)= 1 - 91/100 = 0,09
cosA = 0,3

Ответ: 0,3

5F0BC9

Синус острого угла A треугольника ABC равен $\frac{2\sqrt6}5$. Найдите cosA.

Решение:


Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
cos2A = 1 - sin2A =1 - (2√6/5)= 1 - 24/25 = 1-0,96 = 0,04
cosA = 0,2

Ответ: 0,2

DF0885

Синус острого угла A треугольника ABC равен $\frac{3\sqrt7}8$ . Найдите  cosA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
cos2A = 1 - sin2A =1 - (3√7/8)= 1 - 63/64 = 1-0,984375 = 0,015625
cosA = 0,125

Ответ: 0,125

Обратите внимание, что корень придется извлекать самостоятельно, поскольку числа 125 (трехзначного) в таблице квадратов на экзамене не будет.

D56817

Синус острого угла A треугольника ABC равен 4/5 . Найдите  cosA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
cos2A = 1 - sin2A =1 - (4/5)= 1 - 16/25 = 1-0,64 = 0,36
cosA = 0,6

Ответ: 0,6

F548B1

Синус острого угла A треугольника ABC равен $\frac{\sqrt7}4$ . Найдите  cosA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
cos2A = 1 - sin2A =1 - (7/4)= 1 - 7/16 = 1-0,4375 = 0,5625
cosA = 0,75

Ответ: 0,75

F6FBB5

Синус острого угла A треугольника ABC равен 3/5 . Найдите  cosA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
cos2A = 1 - sin2A =1 - (3/5)= 1 - 9/25 = 1-0,36 = 0,64
cosA = 0,8

Ответ: 0,8

4257EE

Синус острого угла A треугольника ABC равен $\frac{\sqrt{19}}{10}$ . Найдите  cosA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
cos2A = 1 - sin2A =1 - (19/10)= 1 - 19/100 = 1-0,19 = 0,81
cosA = 0,9

Ответ: 0,9

DC7D62

Синус острого угла A треугольника ABC равен $\frac{\sqrt{15}}4$ . Найдите  cosA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
cos2A = 1 - sin2A =1 - (15/4)= 1 - 15/16 = 1-0,9375 = 0,0625
cosA = 0,25

Ответ: 0,25

11D7EC

Косинус острого угла A треугольника ABC равен $\frac{\sqrt{21}}5$ . Найдите  sinA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
sin2A = 1 - cos2A =1 - (21/5)= 1 - 21/25 = 1-0,84 = 0,16
sinA = 0,4

Ответ: 0,4

4BD96F

Косинус острого угла A треугольника ABC равен $\frac{3\sqrt{11}}{10}$ . Найдите  sinA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
sin2A = 1 - cos2A =1 - (3√11/10)= 1 - 99/100 = 1-0,99 = 0,01
sinA = 0,1

Ответ: 0,1

EE565F

Косинус острого угла A треугольника ABC равен $\frac{\sqrt{91}}{10}$ . Найдите  sinA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
sin2A = 1 - cos2A =1 - (91/10)= 1 - 91/100 = 1-0,91 = 0,09
sinA = 0,3

Ответ: 0,3

EE4155

Косинус острого угла A треугольника ABC равен $\frac{2\sqrt6}5$. Найдите sinA.

Решение:


Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
sin2A = 1 - cos2A =1 - (2√6/5)= 1 - 24/25 = 1-0,96 = 0,04
sinA = 0,2

Ответ: 0,2

2657CA

Косинус острого угла A треугольника ABC равен $\frac{3\sqrt7}8$. Найдите sinA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
sin2A = 1 - cos2A =1 - (3√7/8)= 1 - 63/64 = 1-0,984375 = 0,015625
sinA = 0,125

Ответ: 0,125

Обратите внимание, что корень придется извлекать самостоятельно, поскольку числа 125 (трехзначного) в таблице квадратов на экзамене не будет.

857A3B

Косинус острого угла A треугольника ABC равен 4/5. Найдите sinA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
sin2A = 1 - cos2A =1 - (4/5)= 1 - 16/25 = 1-0,64 = 0,36
sinA = 0,6

Ответ: 0,6

588CA0

Косинус острого угла A треугольника ABC равен $\frac{\sqrt7}4$. Найдите sinA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
sin2A = 1 - cos2A =1 - (7/4)= 1 - 7/16 = 1-0,4375 = 0,5625
sinA = 0,75

Ответ: 0,75

5AC6CD

Косинус острого угла A треугольника ABC равен 3/5. Найдите sinA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
sin2A = 1 - cos2A =1 - (3/5)= 1 - 9/25 = 1-0,36 = 0,64
sinA = 0,8

Ответ: 0,8

3B3235

Косинус острого угла A треугольника ABC равен $\frac{\sqrt{19}}{10}$. Найдите sinA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
sin2A = 1 - cos2A =1 - (19/10)= 1 - 19/100 = 1-0,19 = 0,81
sinA = 0,9

Ответ: 0,9

4D93A9

Косинус острого угла A треугольника ABC равен $\frac{\sqrt{15}}4$. Найдите sinA.

Решение:

Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
sin2A = 1 - cos2A =1 - (15/4)= 1 - 15/16 = 1-0,9375 = 0,0625
sinA = 0,25

Ответ: 0,25

A426BF

Найти площадь треугольника по двум сторонам и углу между ними

Вспоминаем формулу нахождения площади треугольника по двум сторонам и углу между ними:

S=1/2аb•sinγ, где а и b - стороны треугольника, γ - угол между ними.

Подставляем известные величины и считаем.

Формула так же есть в справочных материалах ОГЭ, на экзамене можете ими воспользоваться.

В треугольнике ABC известно, что AB=6, BC=10, sin∠ABC=1/3. Найдите площадь треугольника ABC.

Решение:

S=1/2аb•sinγ=6*10*1/3=20
Ответ: 20

D8DE10

В треугольнике ABC известно, что AB=6, BC=12, sin∠ABC=1/4. Найдите площадь треугольника ABC.

Решение:

S=1/2аb•sinγ=6*12*1/4=18
Ответ: 18

510B5D

В треугольнике ABC известно, что AB=20, BC=7, sin∠ABC=2/5. Найдите площадь треугольника ABC.

Решение:

S=1/2аb•sinγ=20*7*2/5=56
Ответ: 56

21430B

В треугольнике ABC известно, что AB=15, BC=8, sin∠ABC=5/6. Найдите площадь треугольника ABC.

Решение:

S=1/2аb•sinγ=15*8*5/6=100
Ответ: 100

770975

В треугольнике ABC известно, что AB=14, BC=5, sin∠ABC=6/7. Найдите площадь треугольника ABC.

Решение:

S=1/2аb•sinγ=14*5*6/7=60
Ответ: 60

845EFC

В треугольнике ABC известно, что AB=12, BC=20, sin∠ABC=5/8. Найдите площадь треугольника ABC.

Решение:

S=1/2аb•sinγ=12*20*5/8=150
Ответ: 150

34F484

В треугольнике ABC известно, что AB=12, BC=15, sin∠ABC=4/9. Найдите площадь треугольника ABC.

Решение:

S=1/2аb•sinγ=12*15*4/9=80
Ответ: 80

86F9F5

В треугольнике ABC известно, что AB=16, BC=25, sin∠ABC=3/10. Найдите площадь треугольника ABC.

Решение:

S=1/2аb•sinγ=16*25*3/10=120
Ответ: 120

6B1EDE

В треугольнике ABC известно, что AB=9, BC=16, sin∠ABC=7/12. Найдите площадь треугольника ABC.

Решение:

S=1/2аb•sinγ=9*16*7/12=84
Ответ: 84

521C5A

В треугольнике ABC известно, что AB=12, BC=10, sin∠ABC=8/15. Найдите площадь треугольника ABC.

Решение:

S=1/2аb•sinγ=12*10*8/15=64
Ответ: 64

3A3D0B

Найти косинус угла, если известны 3 стороны треугольника

Вспомним теорему косинусов.

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

а= b+ с- 2bс cosα

Нужно выразить косинус и подставить известные величины.

Эта формула так же будет у вас под рукой на экзамене в справочных материалах ОГЭ.

В треугольнике АВС известно, что AB=8, BC=10, AC=12. Найдите cos∠ABC.

Решение:


а= b+ с- 2bс • cosα
2bс • cosα =  b+ с2  а2
$\cos\alpha=\frac{b^2+с^2-а^2}{2bс}$
cosα = (82 +102 + 122) : 2*8*10 = 164/160 = 1,025

Ответ: 1,025

40840C

В треугольнике ABC известно, что AB=5, BC=7, AC=9. Найдите cos∠ABC.

Решение:


а= b+ с- 2bс • cosα
2bс • cosα =  b+ с а2
$\cos\alpha=\frac{b^2+с^2-а^2}{2bс}$
$\cos\alpha=\frac{b^2+с^2-а^2}{2\ast b\ast с}$=
Ответ: 

112015

В треугольнике ABC известно, что AB=3, BC=8, AC=7. Найдите cos∠ABC.

Решение:


а= b+ с- 2bс • cosα
2bс • cosα =  b+ с а2
$\cos\alpha=\frac{b^2+с^2-а^2}{2bс}$
$\cos\alpha=\frac{b^2+с^2-а^2}{2\ast b\ast с}$=
Ответ: 

6E8D8A

В треугольнике ABC известно, что AB=5, BC=10, AC=11. Найдите cos∠ABC.

Решение:


а= b+ с- 2bс • cosα
2bс • cosα =  b+ с а2
$\cos\alpha=\frac{b^2+с^2-а^2}{2bс}$
$\cos\alpha=\frac{b^2+с^2-а^2}{2\ast b\ast с}$=
Ответ: 

844A89

В треугольнике ABC известно, что AB=6, BC=7, AC=8. Найдите cos∠ABC.

Решение:


а= b+ с- 2bс • cosα
2bс • cosα =  b+ с а2
$\cos\alpha=\frac{b^2+с^2-а^2}{2bс}$
$\cos\alpha=\frac{b^2+с^2-а^2}{2\ast b\ast с}$=
Ответ: 

79B29A

В треугольнике ABC известно, что AB=5, BC=6, AC=4. Найдите cos∠ABC.

Решение:


а= b+ с- 2bс • cosα
2bс • cosα =  b+ с а2
$\cos\alpha=\frac{b^2+с^2-а^2}{2bс}$
$\cos\alpha=\frac{b^2+с^2-а^2}{2\ast b\ast с}$=
Ответ: 

6557F1

В треугольнике ABC известно, что AB=6, BC=8, AC=4. Найдите cos∠ABC.

Решение:


а= b+ с- 2bс • cosα
2bс • cosα =  b+ с а2
$\cos\alpha=\frac{b^2+с^2-а^2}{2bс}$
$\cos\alpha=\frac{b^2+с^2-а^2}{2\ast b\ast с}$=
Ответ: 

B5CF05

В треугольнике ABC известно, что AB=7, BC=8, AC=13. Найдите cos∠ABC.

Решение:


а= b+ с- 2bс • cosα
2bс • cosα =  b+ с а2
$\cos\alpha=\frac{b^2+с^2-а^2}{2bс}$
$\cos\alpha=\frac{b^2+с^2-а^2}{2\ast b\ast с}$=
Ответ: 

91941D

В треугольнике ABC известно, что AB=8, BC=10, AC=14. Найдите cos∠ABC.

Решение:


а= b+ с- 2bс • cosα
2bс • cosα =  b+ с а2
$\cos\alpha=\frac{b^2+с^2-а^2}{2bс}$
$\cos\alpha=\frac{b^2+с^2-а^2}{2\ast b\ast с}$=
Ответ: 

755B8F

В треугольнике ABC известно, что AB=2, BC=3, AC=4. Найдите cos∠ABC.

Решение:


а= b+ с- 2bс • cosα
2bс • cosα =  b+ с а2
$\cos\alpha=\frac{b^2+с^2-а^2}{2bс}$
$\cos\alpha=\frac{b^2+с^2-а^2}{2\ast b\ast с}$=
Ответ: 

05C64C

Найти синус по двум сторонам

Синус острого угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе. И тот, и другой, известны. Подставляем и считаем.

В треугольнике ABC угол C равен 90°, AC=6, AB=10. Найдите sinB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
sinB = АС/АВ = 6/10 = 0,6
Ответ: 0,6

A67245

В треугольнике ABC угол C равен 90°, AC=4, AB=5. Найдите sinB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
sinB = АС/АВ = 4/5 = 0,8
Ответ: 0,8

46D9DF

В треугольнике ABC угол C равен 90°, AC=7, AB=25. Найдите sinB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
sinB = АС/АВ = 7/25 = 0,28
Ответ: 0,28

6DA700

В треугольнике ABC угол C равен 90°, AC=24, AB=25. Найдите sinB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
sinB = АС/АВ = 24/25 = 0,96
Ответ: 0,96

C7A2A0

В треугольнике ABC угол C равен 90°, AC=6, AB=20. Найдите sinB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
sinB = АС/АВ = 6/20 = 0,3
Ответ: 0,3

ED2D47

В треугольнике ABC угол C равен 90°, AC=11, AB=20. Найдите sinB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
sinB = АС/АВ = 11/20 = 0,55
Ответ: 0,55

F1D3F8

В треугольнике ABC угол C равен 90°, AC=8, AB=40. Найдите sinB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
sinB = АС/АВ = 8/40 = 0,2
Ответ: 0,2

CDC6C7

В треугольнике ABC угол C равен 90°, AC=16, AB=40. Найдите sinB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
sinB = АС/АВ = 16/40 = 0,4
Ответ: 0,4

20BC46

В треугольнике ABC угол C равен 90°, AC=9, AB=25. Найдите sinB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
sinB = АС/АВ = 9/25 = 0,36
Ответ: 0,36

E2F916

В треугольнике ABC угол C равен 90°, AC=13, AB=20. Найдите sinB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
sinB = АС/АВ = 13/20 = 0,65
Ответ: 0,65

2C2621

Найти косинус по двум сторонам треугольника

Косинус острого угла в прямоугольном треугольнике равен отношению прилежащего катета к гипотенузе. Подставляем известные значения и считаем.

В треугольнике ABC угол C равен 90°, BC=8, AB=10. Найдите cosB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
cosB = ВС/АВ = 8/10 = 0,8
Ответ: 0,8

36727A

В треугольнике ABC угол C равен 90°, BC=3, AB=5. Найдите cosB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
cosB = ВС/АВ = 3/5 = 0,6
Ответ: 0,6

E4988D

В треугольнике ABC угол C равен 90°, BC=14, AB=50. Найдите cosB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
cosB = ВС/АВ = 14/50 = 0,28
Ответ: 0,28

B9AA7C

В треугольнике ABC угол C равен 90°, BC=72, AB=75. Найдите cosB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
cosB = ВС/АВ = 72/75 = 0,96
Ответ: 0,96

6E5515

В треугольнике ABC угол C равен 90°, BC=14, AB=20. Найдите cosB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
cosB = ВС/АВ = 14/20 = 0,7
Ответ: 0,7

E812C8

В треугольнике ABC угол C равен 90°, BC=9, AB=20. Найдите cosB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
cosB = ВС/АВ = 9/20 = 0,45
Ответ: 0,45

C759C5

В треугольнике ABC угол C равен 90°, BC=30, AB=40. Найдите cosB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
cosB = ВС/АВ = 30/40 = 0,75
Ответ: 0,75

8854A8

В треугольнике ABC угол C равен 90°, BC=26, AB=40. Найдите cosB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
cosB = ВС/АВ = 26/40 = 0,65
Ответ: 0,65

C5CD1E

В треугольнике ABC угол C равен 90°, BC=16, AB=25. Найдите cosB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
cosB = ВС/АВ = 16/25 = 0,64
Ответ: 0,64

C3A5F2

В треугольнике ABC угол C равен 90°, BC=7, AB=20. Найдите cosB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
cosB = ВС/АВ = 7/20 = 0,35
Ответ: 0,35

D58395

Найти тангенс угла по двум катетам

Тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Подставляем значения катетов и считаем.

В треугольнике ABC угол C равен 90°, BC=5, AC=2. Найдите tgB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
tgB = АС/ВС = 2/5 = 0,4
Ответ: 0,4

98C7DF

В треугольнике ABC угол C равен 90°, BC=5, AC=3. Найдите tgB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
tgB = АС/ВС = 3/5 = 0,6
Ответ: 0,6

22FD03

В треугольнике ABC угол C равен 90°, BC=10, AC=7. Найдите tgB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
tgB = АС/ВС = 7/10 = 0,7
Ответ: 0,7

C18053

В треугольнике ABC угол C равен 90°, BC=10, AC=8. Найдите tgB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
tgB = АС/ВС = 8/10 = 0,8
Ответ: 0,8

33DA26

В треугольнике ABC угол C равен 90°, BC=15, AC=3. Найдите tgB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
tgB = АС/ВС = 3/15 = 0,2
Ответ: 0,2

DD620C

В треугольнике ABC угол C равен 90°, BC=9, AC=27. Найдите tgB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
tgB = АС/ВС = 27/9 = 3
Ответ: 3

342F0C

В треугольнике ABC угол C равен 90°, BC=5, AC=20. Найдите tgB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
tgB = АС/ВС = 20/5 = 4
Ответ: 4

B800B8

В треугольнике ABC угол C равен 90°, BC=3, AC=18. Найдите tgB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
tgB = АС/ВС = 18/3 = 6
Ответ: 6

FF498A

В треугольнике ABC угол C равен 90°, BC=4, AC=28. Найдите tgB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
tgB = АС/ВС = 28/4 = 7
Ответ: 7

C9E181

В треугольнике ABC угол C равен 90°, BC=7, AC=35. Найдите tgB.

Решение:


∠ C = 90°, значит треугольник прямоугольный.
tgB = АС/ВС = 35/7 = 5
Ответ: 5

0663D4

Задачи ОГЭ с развернутым ответом

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 4 и 15 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=$\frac{\sqrt{15}}4$.

Решение:

...
Ответ: ...

F41EBF

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 12 и 21 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=$\frac{\sqrt7}4$.

Решение:

...
Ответ: ...

23C5ED

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 8 и 30 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=$\frac{\sqrt{15}}4$.

Решение:

...
Ответ: ...

1D3A90

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 18 и 22 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=$\frac{\sqrt{11}}6$.

Решение:

...
Ответ: ...

35C690

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 18 и 40 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=$\frac{\sqrt5}3$.

Решение:

...
Ответ: ...

CCD611

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 9 и 35 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=$\frac{\sqrt{35}}6$.

Решение:

...
Ответ: ...

65B0A0

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 12 и 45 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=$\frac{\sqrt{15}}4$.

Решение:

...
Ответ: ...

36C43D

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 9 и 32 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=$\frac{2\sqrt2}3$.

Решение:

...
Ответ: ...

A077B6

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 24 и 42 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=$\frac{\sqrt7}4$.

Решение:

...
Ответ: ...

973563

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 36 и 44 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=$\frac{\sqrt{11}}6$.

Решение:

...
Ответ: ...

A142B2

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 16 и 39 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=$\frac{\sqrt{39}}8$.

Решение:

...
Ответ: ...

553368

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 9 и 11 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=$\frac{\sqrt{11}}6$.

Решение:

...
Ответ: ...

B83171