Ответы к странице 130

Задание 703

Овощевод−опытник снял с одного куста помидоров 12 плодов по 250 г, 10 плодов по 330 г и 8 плодов по 210 г. Найдите среднюю массу одного помидора.

Решение

(250 * 12 + 330 * 10 + 210 * 8) : (12 + 10 + 8) = (3000 + 3300 + 1680) : 30 = 7980 : 30 = 266 (г) - средняя масса одного помидора
Ответ: 266 г.

Задание 704

Среднее арифметическое четырёх чисел 6,7. Первое равно 2, второе в 1,2 раза больше первого, а третье меньше четвёртого в 1,5 раза. Найдите третье и четвёртое числа.

Решение

Пусть третье число равно x.
Составим уравнение:
(2 + (1,2 * 2) + 1,5x + х) : 4 = 6,7
4,4 + 2,5х = 6,7 * 4
х = (26,8 − 4,4) : 2,5
х = 8,96 − третье число,
1,5 * 8,96 = 13,44 − четвёртое число.
Ответ: 8,96 и 13,44.

Задание 705

Пассажирский поезд прошёл путь от одной станции до другой со средней скоростью 67 км/ч. Вначале он шёл 4 ч со скоростью 59,5 км/ч, а затем увеличил скорость и прибыл на вторую станцию через 3 ч. Найдите скорость поезда на втором участке пути.

Решение

Пусть х − скорость поезда на втором участке пути,
тогда средняя скорость поезда на всем пути равна
(59,5 * 4 + х * 3) : (4 + 3) км/ч.
Составим уравнение:
(59,5 * 4 + х * 3) : (4 + 3) 
                      469
238 + 3х = 67 * 7 
х = (469 − 238) : 3
х = 231 : 3
х = 77
Значит,  скорость поезда на втором участке пути 77 км/ч.
Ответ: 77 км/ч.

Задание 706

Серёжа стал на велосипеде догонять Наташу, идущую пешком, когда между ними было 600 м, и догнал её через 4 мин. Найдите скорость, с которой шла Наташа, если её скорость в 4 раза меньше скорости Серёжи.

Решение

Пусть х м/мин − скорость Наташи,
тогда скорость Сережи 4х м/мин.
Составим уравнение:
600 : (4х − х) = 4
3х = 600 : 4 
х = 150 : 3
х = 50
Значит, скорость Наташи 50 м/мин.
Ответ: 50 м/мин.

Задание 707

С двух грядок, общая площадь которых 40,5 м², получили 137,7 кг моркови. Сколько килограммов моркови собрали с каждой грядки, если площадь одной из них на 4,5 м² меньше, чем площадь другой, а урожайность одинакова?

Решение

Пусть площадь одной грядки − х м²,
тогда (х + 4,5) м² − площадь другой грядки.
Составим уравнение:
х + х + 4,5 = 40,5
2х = 40,5 − 4,5 − 36
х = 36 : 2
х = 18
Значит, 18 м² − площадь одной грядки,
18х + 4,5 = 22,5 (м²) − площадь другой грядки.
137,7 : 40,5 = 3,4 (кг/м²) - урожайность моркови
18 * 3,4 = 61,2 (кг) - моркови получили с первой грядки
22,5 * 3,4 = 76,5 (кг) - моркови получили со второй грядки
Ответ: 61,2 кг,  76,5 кг.

Задание 708

Запишите в виде равенства предложение:
а) 5n на 8,11 больше n;
б) утроенное а на 5,18 больше а;
в) разность m и 9,11 в 4 раза меньше их суммы.

Решение

а) 5n − n = 8,11

б) 3а − а = 5,18

в) (m + 9,11) : (m − 9,11) = 4

Задание 709

С помощью микрокалькулятора вычислите значение выражения:
а) 78,627 + 3,081;
б) 735,24 − 261,87;
в) 41,65 * 85,38;
г) 62,14 : 9,241;
д) 508,3 + 891,4 : 35,4;
е) 92,5 * 11,6 − 429,15.

Решение

а) 78,627 + 3,081 = 81,708

б) 735,24 − 261,87 = 473,37

в) 41,65 − 85,38 = 3556,077

г) 62,14 : 9,241 = 6,7243804

д) 508,3 + 891,4 : 35,4 = 508,3 + 25,181 = 533,481

e) 92,5 * 11,6 − 429,15 = 1073 − 429,15 = 643,85

Задание 710

Найдите с помощью микрокалькулятора объём прямоугольного параллелепипеда по формуле V = abc, если:
a = 2,81 дм; b = 1,76 дм; с = 4,9 дм; ответ округлите до сотых.

Решение

При a = 2,81 дм, b = 1,76 дм и с = 4,9 дм:
V = a b с = 2,81 * 1,76 * 4,9 = 24,23344 (дм³)
24,23344 дм³ ≈ 24,23 дм³.
Ответ: 24,23 дм³.

Задание 711

Два поезда одновременно вышли навстречу друг другу из двух городов, расстояние между которыми 495 км. Через 3 ч они встретились. Какова скорость каждого поезда, если известно, что скорость одного из них на 5 км/ч больше скорости другого?

Решение

Пусть х км/ч скорость одного поезда,
тогда (х + 5) км/ч скорость другого поезда.
Скорость сближения поездов равна (х + х + 5) км/ч,
поезда встретились через 495 : (х + х + 5) ч.
Составим уравнение:
495 : (х + х + 5) = 3
2х + 5 = 495 : 3
х = (165 − 5) : 2
х = 80
Значит, 80 км/ч − скорость одного поезда равна
80 + 5 = 85 (км/ч) - скорость другого поезда
Ответ: 80 км/ч и 85 км/ч.

Задание 712

Два велосипедиста одновременно выехали навстречу друг другу из двух посёлков, расстояние между которыми 76 км. Через 2 ч они встретились. Какова скорость каждого велосипедиста, если известно, что скорость одного из них в 1,5 раза больше скорости другого?

Решение

Пусть х − скорость одного велосипедиста,
тогда 1,5x − скорость другого велосипедиста.
Велосипедисты встретились через 76 : (x + 1,5x) ч.
Составим уравнение:
76 : (у + 1,5y) = 2
2,5у = 76 : 2
у = 38 : 2,5
у = 15,2
Значит, 15,2 км/ч − скорость одного велосипедиста
1,5 * 15,2 = 22,8 (км/ч) - скорость другого велосипедиста
Ответ: 15,2 км/ч, 22,8 км/ч.