Ответы к странице 129

Задание № 502. За четыре дня путешествия капитан Врунгель проплыл 546 миль. Во второй день он проплыл в 4 раза больше, чем в первый, в третий − в 3 раза больше, чем в первый, а в четвертый − в 5 раз больше, чем в первый. Сколько миль проплывал капитан Врунгель ежедневно?

Решение

Пусть в первый день капитан Врунгель проплыл x миль, тогда:
4x миль он проплыл во второй день;
3x миль он проплыл в третий день;
5x миль он проплыл в четвертый день.
Составим уравнение:
x + 4x + 3x + 5x = 546
13x = 546
x = 546 : 13
x = 42 (мили)
4x = 4 * 42 = 168 (миль) 
3x = 3 * 42 = 126 (миль)
5x = 5 * 42 = 210 (миль)
Ответ: 42 мили проплыл капитан Врунгель в первый день, 168 миль во второй день,  126 миль в третий день, 210 миль в четвертый день.

Задание № 503. Егор, Саша и Алеша поймали 256 окуней. Егор поймал в 3 раза больше рыб, чем Саша, а Алеша − столько, сколько Егор и Саша вместе. Сколько окуней поймал лучший рыбак?

Решение

Пусть x окуней поймал Саша, тогда:
3x окуней поймал Егор;
x + 3x = 4x окуней поймал Алеша.
Составим уравнение:
x + 3x + 4x = 256
8x = 256
x = 256 : 8
x = 32 (ок.) поймал Саша;
3x = 3 * 32 = 96 (ок.) поймал Егор;
4x = 4 * 32 = 128 (ок.) поймал Алеша.
128 > 96 > 32
Ответ: лучший рыбак − Алеша, он поймал 128 окуней.

Задание № 504. Красная Шапочка, Мальвина, Золушка и Дюймовочка слепили 500 пельменей. Красная Шапочка слепила в 2 раза больше пельменей, чем Дюймовочка, Мальвина − столько, сколько Мальвина и Дюймовочка вместе, а Золушка − столько, сколько Мальвина и Дюймовочка вместе. Сколько пельменей слепила каждая девочка?

Решение

Пусть x пельменей слепила Дюймовочка, тогда:
2x пельменей слепила Красная шапочка;
x + 2x = 3x пельменей слепила Мальвина;
x + 3x = 4x пельменей слепила Золушка.
Составим уравнение:
x + 2x + 3x + 4x = 500
10x = 500
x = 500 : 10
x = 50 (п.) слепила Дюймовочка
2x = 2 * 50 = 100 (п.) слепила Красная шапочка
3x = 3 * 50 = 150 (п.) слепила Мальвина
4x = 4 * 50 = 200 (п.) слепила Золушка
Ответ: 50, 100, 150 и 200 пельменей.

Задание № 505. В трех вагонах электропоезда ехало 246 пассажиров. В первом вагоне было в 2 раза больше пассажиров, чем во втором, а в третьем − на 78 пассажиров больше, чем во втором. Сколько пассажиров ехало в каждом вагоне?

Решение

Пусть x пассажиров ехало во втором вагоне, тогда:
2x пассажиров ехало в первом вагоне;
x + 78 пассажиров ехало в третьем вагоне.
Составим уравнение:
x + 2x + x + 78 = 246
4x = 246 − 78
x = 168 : 4
x = 42 (п.) ехало во втором вагоне
2x = 2 * 42 = 84 (п.) ехало в первом вагоне
x + 78 = 42 + 78 = 120 (п.) ехало в третьем вагоне
Ответ: 42, 84 и 120 пассажиров.

Задание № 506. В три школы отправили 552 кг апельсинов, причем в одну школу отправили в 6 раз меньше апельсинов, чем во вторую, и на 136 кг меньше, чем в третью. Сколько килограммов апельсинов отправили в каждую школу?

Решение

Пусть x кг апельсинов отправили в первую школу, тогда:
6x кг апельсинов отправили во вторую школу;
x + 136 кг апельсинов отправили в третью школу.
Составим уравнение:
x + 6x + x + 136 = 552
8x = 552 − 136
x = 416 : 8
x = 52 (кг) апельсинов отправили в первую школу
6x = 6 * 52 = 312 (кг) апельсинов отправили во вторую школу
x + 136 = 52 + 136 = 188 (кг) апельсинов отправили в третью школу
Ответ: 52 кг апельсинов отправили в первую школу, 312 кг во вторую, 188 кг в третью.

Задание № 507. Одна из сторон треугольника в 5 раз меньше второй и на 25 см меньше третьей. Найдите стороны треугольника, если его периметр равен 74 см.

Решение

Пусть x см длина первой стороны треугольника, тогда:
5x см длина второй стороны треугольника;
x + 25 см длина третьей стороны треугольника.
Составим уравнение:
x + 5x + x + 25 = 74
7x = 74 − 25
x = 49 : 7
x = 7 (см) длина первой стороны треугольника
5x = 5 * 7 = 35 (см) длина второй стороны треугольника
x + 25 = 7 + 25 = 32 (см) длина третьей стороны треугольника
Ответ: 7 см, 35 см, 32 см.

Задание № 508. Одна из сторон треугольника в 2 раза больше второй стороны, вторая − на 7 дм меньше третьей. Найдите стороны треугольника, если его периметр равен 99 дм.

Решение

Пусть x дм длина второй стороны треугольника, тогда:
2x дм длина первой стороны треугольника;
x + 7 дм длина третьей стороны треугольника.
Составим уравнение:
x + 2x + x + 7 = 99
4x = 99 − 7
x = 92 : 4
x = 23 (дм) длина второй стороны треугольника
2x = 2 * 23 = 46 (дм) длина первой стороны треугольника
x + 7 = 23 + 7 = 30 (дм) длина третьей стороны треугольника
Ответ: 23 дм, 46 дм, 30 дм.

Задание № 509. 1) Верно ли, что если каждое слагаемое делится на некоторое число, то и сумма этих слагаемых делится на это число? Проиллюстрируйте свой ответ примерами.
2) Может ли сумма нескольких слагаемых делиться на некоторое число, если каждое слагаемое не делится на это число?

Ответы

1) 2 + 4 + 6 + 8 + 10 + 50 = 80 верно, так как каждое слагаемое делится на 2 и сумма также делится на 2;
4 + 8 + 12 + 16 + 20 + 100 = 160 верно, так как каждое слагаемое делится на 4 и сумма также делится на 4.

2) Может, например:
3 + 5 + 7 + 9 = 24 делится и на 2, и на 4, и на 6, и на 8, но при этом не одно из слагаемых не делится на эти числа.

Задание № 510. Как изменится частное, если:

1) делимое увеличить в 7 раз; частное увеличится в 7 раз
2) делитель увеличить в 4 раза; частное уменьшится в 4 раза
3) делимое увеличить в 8 раз, а делитель − в 2 раза; частное увеличится в 4 раза
4) делимое уменьшить в 9 раз, а делитель − в 3 раза; частное уменьшится в 3 раза
5) делимое увеличить в 6 раз, а делитель уменьшить в 2 раза; частное увеличится в 12 раз
6) делимое уменьшить в 6 раз, а делитель увеличить в 2 раза? частное уменьшится в 12 раз