Ответы к странице 21

§3. Сложение и вычитание рациональных дробей с одинаковыми знаменателями

Вопросы

1. Как сложить рациональные дроби с одинаковыми знаменателями?

Ответ:

Чтобы сложить рациональные дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить тот же.

2. Как вычесть рациональные дроби с одинаковыми знаменателями?

Ответ:

Чтобы вычесть рациональные дроби с одинаковыми знаменателями, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же.

Упражнения

68. Выполните действия:
1) $\frac{x}{6} + \frac{y}{6}$;
2) $\frac{a}{3} - \frac{b}{3}$;
3) $\frac{m}{n} + \frac{4m}{n}$;
4) $\frac{6c}{d} - \frac{2c}{d}$;
5) $\frac{m + n}{6} - \frac{m - 2n}{6}$;
6) $\frac{2a - 3b}{6ab} + \frac{9b - 2a}{6ab}$;
7) $-\frac{5c + 4d}{cd} + \frac{4d + 9c}{cd}$;
8) $\frac{8m + 3}{10m^2} - \frac{2m + 3}{10m^2}$.

Решение:

1) $\frac{x}{6} + \frac{y}{6} = \frac{x + y}{6}$

2) $\frac{a}{3} - \frac{b}{3} = \frac{a - b}{3}$

3) $\frac{m}{n} + \frac{4m}{n} = \frac{m + 4m}{n} = \frac{5m}{n}$

4) $\frac{6c}{d} - \frac{2c}{d} = \frac{6c - 2c}{d} = \frac{4c}{d}$

5) $\frac{m + n}{6} - \frac{m - 2n}{6} = \frac{m + n - (m - 2n)}{6} = \frac{m + n - m + 2n}{6} = \frac{3n}{6} = \frac{n}{2}$

6) $\frac{2a - 3b}{6ab} + \frac{9b - 2a}{6ab} = \frac{2a - 3b + 9b - 2a}{6ab} = \frac{6b}{6ab} = \frac{1}{a}$

7) $-\frac{5c + 4d}{cd} + \frac{4d + 9c}{cd} = \frac{-(5c + 4d) + 4d + 9c}{cd} = \frac{-5c - 4d + 4d + 9c}{cd} = \frac{4c}{cd} = \frac{4}{d}$

8) $\frac{8m + 3}{10m^2} - \frac{2m + 3}{10m^2} = \frac{8m + 3 - (2m + 3)}{10m^2} = \frac{8m + 3 - 2m - 3}{10m^2} = \frac{6m}{10m^2} = \frac{3}{5m}$

69. Представьте в виде дроби выражение:
1) $\frac{7k}{18p} - \frac{4k}{18p}$;
2) $\frac{a - b}{2b} - \frac{a}{2b}$;
3) $-\frac{a - 12b}{27a} + \frac{a + 15b}{27a}$;
4) $\frac{x - 7y}{xy} - \frac{x - 4y}{xy}$;
5) $\frac{10a + 6b}{11a^3} - \frac{6b - a}{11a^3}$;
6) $\frac{x^2 - xy}{x^2y} + \frac{2xy - 3x^2}{x^2y}$.

Решение:

1) $\frac{7k}{18p} - \frac{4k}{18p} = \frac{7k - 4k}{18p} = \frac{3k}{18p} = \frac{k}{6p}$

2) $\frac{a - b}{2b} - \frac{a}{2b} = \frac{a - b - a}{2b} = \frac{-b}{2b} = -\frac{1}{2}$

3) $-\frac{a - 12b}{27a} + \frac{a + 15b}{27a} = \frac{-(a - 12b) + a + 15b}{27a} = \frac{-a + 12b + a + 15b}{27a} = \frac{27b}{27a} = \frac{b}{a}$

4) $\frac{x - 7y}{xy} - \frac{x - 4y}{xy} = \frac{x - 7y - (x - 4y)}{xy} = \frac{x - 7y - x + 4y}{xy} = \frac{-3y}{xy} = -\frac{3}{x}$

5) $\frac{10a + 6b}{11a^3} - \frac{6b - a}{11a^3} = \frac{10a + 6b - (6b - a)}{11a^3} = \frac{10a + 6b - 6b + a}{11a^3} = \frac{11a}{11a^3} = \frac{1}{a^2}$

6) $\frac{x^2 - xy}{x^2y} + \frac{2xy - 3x^2}{x^2y} = \frac{x^2 - xy + 2xy - 3x^2}{x^2y} = \frac{xy - 2x^2}{x^2y} = \frac{x(y - 2x)}{x^2y} = \frac{y - 2x}{xy}$

70. Упростите выражение:
1) $\frac{a^2}{a + 3} - \frac{9}{a + 3}$;
2) $\frac{t}{t^2 - 16} - \frac{4}{t^2 - 16}$;
3) $\frac{m^2}{(m - 5)^2} - \frac{25}{(m - 5)^2}$;
4) $\frac{5x + 9}{x^2 - 1} - \frac{4x + 8}{x^2 - 1}$;
5) $\frac{b^2}{b + 10} + \frac{20b + 100}{b + 10}$;
6) $\frac{c^2}{c - 7} - \frac{14c - 49}{c - 7}$.

Решение:

1) $\frac{a^2}{a + 3} - \frac{9}{a + 3} = \frac{a^2 - 9}{a + 3} = \frac{(a - 3)(a + 3)}{a + 3} = a - 3$

2) $\frac{t}{t^2 - 16} - \frac{4}{t^2 - 16} = \frac{t - 4}{t^2 - 16} = \frac{t - 4}{(t - 4)(t + 4)} = \frac{1}{t + 4}$

3) $\frac{m^2}{(m - 5)^2} - \frac{25}{(m - 5)^2} = \frac{m^2 - 25}{(m - 5)^2} = \frac{(m - 5)(m + 5)}{(m - 5)^2} = \frac{m + 5}{m - 5}$

4) $\frac{5x + 9}{x^2 - 1} - \frac{4x + 8}{x^2 - 1} = \frac{5x + 9 - (4x + 8)}{x^2 - 1} = \frac{5x + 9 - 4x - 8}{(x - 1)(x + 1)} = \frac{x + 1}{(x - 1)(x + 1)} = \frac{1}{x - 1}$

5) $\frac{b^2}{b + 10} + \frac{20b + 100}{b + 10} = \frac{b^2 + 20b + 100}{b + 10} = \frac{(b + 10)^2}{b + 10} = b + 10$

6) $\frac{c^2}{c - 7} - \frac{14c - 49}{c - 7} = \frac{c^2 - (14c - 49)}{c - 7} = \frac{c^2 - 14c + 49}{c - 7} = \frac{(c - 7)^2}{c - 7} = c - 7$

71. Упростите выражение:
1) $\frac{c^2}{c - 9} - \frac{81}{c - 9}$;
2) $\frac{a^2}{(a - 6)^2} - \frac{36}{(a - 6)^2}$;
3) $\frac{3x + 5}{x^2 - 4} - \frac{2x + 7}{x^2 - 4}$;
4) $\frac{y^2}{y - 2} - \frac{4y - 4}{y - 2}$.

Решение:

1) $\frac{c^2}{c - 9} - \frac{81}{c - 9} = \frac{c^2 - 81}{c - 9} = \frac{(c - 9)(c + 9)}{c - 9} = c + 9$

2) $\frac{a^2}{(a - 6)^2} - \frac{36}{(a - 6)^2} = \frac{a^2 - 36}{(a - 6)^2} = \frac{(a - 6)(a + 6)}{(a - 6)^2} = \frac{a^2 - 36}{(a - 6)^2} = \frac{a + 6}{a - 6}$

3) $\frac{3x + 5}{x^2 - 4} - \frac{2x + 7}{x^2 - 4} = \frac{3x + 5 - (2x + 7)}{x^2 - 4} = \frac{3x + 5 - 2x - 7}{x^2 - 4} = \frac{x - 2}{(x - 2)(x + 2)} = \frac{1}{x + 2}$

4) $\frac{y^2}{y - 2} - \frac{4y - 4}{y - 2} = \frac{y^2 - (4y - 4)}{y - 2} = \frac{y^2 - 4y + 4}{y - 2} = \frac{(y - 2)^2}{y - 2} = y - 2$

72. Выполните действия:
1) $\frac{a + b}{c - 7} + \frac{a}{7 - c}$;
2) $\frac{5m}{m - n} + \frac{5n}{n - m}$;
3) $\frac{2x - 4y}{x - 3y} - \frac{4x - 14y}{3y - x}$;
4) $\frac{81b^2}{9b - a} + \frac{a^2}{a - 9b}$;
5) $\frac{t^2}{3t - 6} + \frac{4}{6 - 3t}$;
6) $\frac{y^2}{y - 1} - \frac{1 - 2y}{1 - y}$.

Решение:

1) $\frac{a + b}{c - 7} + \frac{a}{7 - c} = \frac{a + b}{c - 7} - \frac{a}{c - 7} = \frac{a + b - a}{c - 7} = \frac{b}{c - 7}$

2) $\frac{5m}{m - n} + \frac{5n}{n - m} = \frac{5m}{m - n} - \frac{5n}{m - n} = \frac{5m - 5n}{m - n} = \frac{5(m - n)}{m - n} = 5$

3) $\frac{2x - 4y}{x - 3y} - \frac{4x - 14y}{3y - x} = \frac{2x - 4y}{x - 3y} + \frac{4x - 14y}{x - 3y} = \frac{2x - 4y + 4x - 14y}{x - 3y} = \frac{6x - 18y}{x - 3y} = \frac{6(x - 3y)}{x - 3y} = 6$

4) $\frac{81b^2}{9b - a} + \frac{a^2}{a - 9b} = \frac{81b^2}{9b - a} - \frac{a^2}{9b - a} = \frac{81b^2 - a^2}{9b - a} = \frac{(9b - a)(9b + a)}{9b - a} = 9b + a$

5) $\frac{t^2}{3t - 6} + \frac{4}{6 - 3t} = \frac{t^2}{3t - 6} - \frac{4}{3t - 6} = \frac{t^2 - 4}{3t - 6} = \frac{(t - 2)(t + 2)}{3(t - 2)} = \frac{t + 2}{3}$

6) $\frac{y^2}{y - 1} - \frac{1 - 2y}{1 - y} = \frac{y^2}{y - 1} + \frac{1 - 2y}{y - 1} = \frac{y^2 + 1 - 2y}{y - 1} = \frac{y^2 - 2y + 1}{y - 1} = \frac{(y - 1)^2}{y - 1} = y - 1$