Ответы к странице 176
§21. Теорема Виета
Вопросы
1. Сформулируйте теорему Виета.
Ответ:
Если $x_1$ и $x_2$ − корни квадратного уравнения $ax^2 + bx + c = 0$, то:
$x_1 + x_2 = -\frac{b}{a}$;
$x_1x_2 = \frac{c}{a}$.
2. Сформулируйте следствие из теоремы Виеты.
Ответ:
Если $x_1$ и $x_2$ − корни приведенного квадратного уравнения $x^2 + bx + c = 0$, то:
$x_1 + x_2 = -b$;
$x_1x_2 = c$.
3. Сформулируйте теорему, обратную теореме Виета.
Ответ:
Если числа α и β таковы, что $α + β = -\frac{b}{a}$ и $αβ = \frac{c}{a}$, то эти числа являются корнями квадратного уравнения $ax^2 + bx + c = 0$.
4. Сформулируйте следствие из теоремы, обратной теореме Виета.
Ответ:
Если числа α и β таковы, что α + β = −b и αβ = c, то эти числа являются корнями приведенного квадратного уравнения $x^2 + bx + c = 0$.
Упражнения
705. Чему равна сумма корней уравнения $x^2 + 5x - 10 = 0$:
1) 5;
2) −5;
3) −10;
4) 10?
Решение:
$x^2 + 5x - 10 = 0$
$x_1 + x_2 = -b = -5$
Ответ: 2) −5
706. Чему равно произведение корней уравнения $x^2 - 14x + 12 = 0$:
1) −14;
2) 14;
3) 12;
4) −12?
Решение:
$x^2 - 14x + 12 = 0$
$x_1x_2 = с = 12$
Ответ: 3) 12
707. Не решая уравнение, найдите сумму и произведение его корней:
1) $x^2 + 6x - 32 = 0$;
2) $x^2 - 10x + 4 = 0$;
3) $2x^2 - 6x + 3 = 0$;
4) $10x^2 + 42x + 25 = 0$.
Решение:
1) $x^2 + 6x - 32 = 0$
$x_1 + x_2 = -b = -6$
$x_1x_2 = c = -32$
Ответ: −6; −32.
2) $x^2 - 10x + 4 = 0$
$x_1 + x_2 = -b = -(-10) = 10$
$x_1x_2 = c = 4$
Ответ: 10; 4.
3) $2x^2 - 6x + 3 = 0$
$x_1 + x_2 = -\frac{b}{a} = -\frac{-6}{2} = -(-3) = 3$
$x_1x_2 = \frac{c}{a} = \frac{3}{2} = 1,5$
Ответ: 3; 1,5.
4) $10x^2 + 42x + 25 = 0$
$x_1 + x_2 = -\frac{b}{a} = -\frac{42}{10} = -4,2$
$x_1x_2 = \frac{c}{a} = \frac{25}{10} = 2,5$
Ответ: −4,2; 2,5.
708. Не решая уравнение, найдите сумму и произведение его корней:
1) $x^2 - 12x - 18 = 0$;
2) $x^2 + 2x - 9 = 0$;
3) $3x^2 + 7x + 2 = 0$;
4) $-4x^2 - 8x + 27 = 0$.
Решение:
1) $x^2 - 12x - 18 = 0$
$x_1 + x_2 = -b = -(-12) = 12$
$x_1x_2 = c = -18$
Ответ: 12; −18.
2) $x^2 + 2x - 9 = 0$
$x_1 + x_2 = -b = -2$
$x_1x_2 = c = -9$
Ответ: −2; −9.
3) $3x^2 + 7x + 2 = 0$
$x_1 + x_2 = -\frac{b}{a} = -\frac{7}{3} = -2\frac{1}{3}$
$x_1x_2 = \frac{c}{a} = \frac{2}{3}$
Ответ: $-2\frac{1}{3}; \frac{2}{3}$.
4) $-4x^2 - 8x + 27 = 0$
$x_1 + x_2 = -\frac{b}{a} = -\frac{-8}{-4} = -2$
$x_1x_2 = \frac{c}{a} = \frac{27}{-4} = -6\frac{3}{4}$
Ответ: $-2; -6\frac{3}{4}$.
709. Применяя теорему, обратную теореме Виета, определите, являются ли корнями уравнения:
1) $x^2 - 8x + 12 = 0$ числа 2 и 6;
2) $x^2 + x - 56 = 0$ числа −7 и 8;
3) $x^2 - 13x + 42 = 0$ числа 5 и 8;
4) $x^2 - 20x - 99 = 0$ числа 9 и 11.
Решение:
1) $x^2 - 8x + 12 = 0$
$x_1 = 2$
$x_2 = 6$
$x_1 + x_2 = -b = -(-8) = 8$
2 + 6 = 8
8 = 8 − верно
$x_1x_2 = с = 12$
2 * 6 = 12
12 = 12 − верно
Ответ: числа 2 и 6 являются корнями уравнения
2) $x^2 + x - 56 = 0$
$x_1 = -7$
$x_2 = 8$
$x_1 + x_2 = -b = -1$
−7 + 8 = −1
1 = −1 − неверно
$x_1x_2 = с = -56$
−7 * 8 = −56
−56 = −56 − верно
Ответ: числа −7 и 8 не являются корнями уравнения
3) $x^2 - 13x + 42 = 0$
$x_1 = 5$
$x_2 = 8$
$x_1 + x_2 = -b = -(-13) = 13$
5 + 8 = 13
13 = 13 − верно
$x_1x_2 = с = 42$
5 * 8 = 42
40 = 42 − неверно
Ответ: числа 5 и 8 не являются корнями уравнения
4) $x^2 - 20x - 99 = 0$
$x_1 = 9$
$x_2 = 11$
$x_1 + x_2 = -b = -(-20) = 20$
9 + 11 = 20
20 = 20 − верно
$x_1x_2 = с = -99$
9 * 11 = −99
99 = −99 − неверно
Ответ: числа 9 и 11 не являются корнями уравнения