Ответы к странице 32

140. Выполните деление:
1) $\frac{5}{18} : (-\frac{25}{27})$;
2) $8 : \frac{4}{17}$;
3) $-\frac{8}{15} : (-24)$;
4) $1\frac{3}{5} : 5\frac{1}{3}$.

Решение:

1) $\frac{5}{18} : (-\frac{25}{27}) = \frac{5}{18} * (-\frac{27}{25}) = \frac{1}{2} * (-\frac{3}{5}) = -\frac{3}{10}$

2) $8 : \frac{4}{17} = 8 * \frac{17}{4} = 2 * 17 = 34$

3) $-\frac{8}{15} : (-24) = -\frac{8}{15} * (-\frac{1}{24}) = \frac{1}{15} * \frac{1}{3} = \frac{1}{45}$

4) $1\frac{3}{5} : 5\frac{1}{3} = \frac{8}{5} : \frac{16}{3} = \frac{8}{5} * \frac{3}{16} = \frac{1}{5} * \frac{3}{2} = \frac{3}{10}$

141. Найдите значение степени:
1) $(\frac{1}{3})^5$;
2) $(\frac{2}{5})^3$;
3) $(-2\frac{2}{3})^2$;
4) $(-3\frac{1}{3})^3$.

Решение:

1) $(\frac{1}{3})^5 = \frac{1}{3 * 3 * 3 * 3 * 3} = \frac{1}{243}$

2) $(\frac{2}{5})^3 = \frac{2 * 2 * 2}{5 * 5 * 5} = \frac{8}{125}$

3) $(-2\frac{2}{3})^2 = (-\frac{8}{3})^2 = \frac{8 * 8}{3 * 3} = \frac{64}{9} = 7\frac{1}{9}$

4) $(-3\frac{1}{3})^3 = (-\frac{10}{3})^3 = -\frac{10 * 10 * 10}{3 * 3 * 3} = -\frac{1000}{27} = -\frac{1000}{27} = -37\frac{1}{27}$

142. Два парома одновременно отплывают от противоположных берегов реки и пересекают ее перпендикулярно берегам. Скорости паромов постоянные, но разные. Паромы встречаются на расстоянии 720 м от одного из берегов, после чего продолжают движение. Достигнув берегов, паромы сразу начинают двигаться обратно и через некоторое время встречаются на расстоянии 400 м от другого берега. Какова ширина реки?

Решение:

Общее расстояние, пройденное паромами до 1-й встречи, равно ширине реки. Расстояние, которое они потом прошли до берегов, так же равно ширине реки. И расстояние от берегов до второй встречи равно ширине реки.
Значит, расстояние, пройденное от начала пути до 2-й встречи, в 3 раза больше ширины реки; а каждый паром прошел в 3 раза больше пути, чем до первой встречи.
3) 720 * 3 = 2160 (м) − прошел один из паромов до второй встречи;
4) 2600 − 400 = 1760 (м) − ширина реки.
Ответ: 1760 метров.