Ответы к странице 56

206. Составьте уравнение, равносильное данному:
1) 2x − 3 = 4;
2) |x| = 1;
3) x + 6 = x − 2.

Решение:

1) 2x − 3 = 4
Если к обеим частям данного уравнения прибавить (или из обеих частей вычесть) одно и то же число, то получим уравнение, равносильное данному.
Равносильное уравнение:
(2x − 3) + 5 = 4 + 5
2x − 3 + 5 = 9
2x + 2 = 9

Проверка:
2x − 3 = 4
2x = 4 + 3
2x = 7
x = 3,5

2x + 2 = 9
2x = 9 − 2
2x = 7
x = 3,5

2) |x| = 1
Если обе части уравнения умножить (разделить) на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.
|x| : 5 = 1 : 5
$\frac{|x|}{5} = \frac{1}{5}$

Проверка:
|x| = 1
x = ±1

$\frac{|x|}{5} = \frac{1}{5} |*5$
|x| = 1
x = ±1

3) x + 6 = x − 2
Если какое−либо слагаемое перенести из одной части уравнения в другую, изменив при этом его знак на противоположный, то получим уравнение, равносильное данному.
x = x − 2 − 6
x = x − 8

Проверка:
x + 6 = x − 2
x − x = −2 − 6
0 ≠ −8 − нет корней

x = x − 8
x − x = −8
0 ≠ −8 − нет корней

207. Решите уравнение:
1) $\frac{x - 6}{x - 4} = 0$;
2) $\frac{x - 2}{x^2 - 4} = 0$;
3) $\frac{x^2 - 4}{x - 2} = 0$;
4) $\frac{x - 2}{x - 2} = 1$;
5) $\frac{2x^2 + 18}{x^2 + 9} = 2$;
6) $\frac{x}{x - 5} + \frac{2x - 9}{x - 5} = 0$;
7) $\frac{5x - 7}{x + 1} - \frac{x - 5}{x + 1} = 0$;
8) $\frac{2x + 16}{x + 3} - \frac{1 - 3x}{x + 3} = 0$;
9) $\frac{2}{x - 1} + \frac{1}{x + 1} = 0$;
10) $\frac{3}{x - 2} = \frac{4}{x + 3}$;
11) $\frac{x}{x - 6} = 2$;
12) $\frac{x - 4}{x - 3} = \frac{2x + 1}{2x - 1}$;
13) $\frac{x + 8}{x} - \frac{6}{x - 2} = 0$;
14) $\frac{2x}{x - 5} - \frac{x^2 + 15x}{x^2 - 25} = 0$;
15) $3 - \frac{2x^2 - 5x}{x^2 - 3x} = 0$.

Решение:

1) $\frac{x - 6}{x - 4} = 0$
$\begin{equation*} \begin{cases} x - 6 = 0 &\\ x - 4 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 6 &\\ x ≠ 4 & \end{cases} \end{equation*}$
Ответ: x = 6

2) $\frac{x - 2}{x^2 - 4} = 0$
$\begin{equation*} \begin{cases} x - 2 = 0 &\\ x^2 - 4 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 2 &\\ x^2 ≠ 4 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 2 &\\ x ≠ ±2 & \end{cases} \end{equation*}$
Ответ: нет корней

3) $\frac{x^2 - 4}{x - 2} = 0$
$\begin{equation*} \begin{cases} x^2 - 4 = 0 &\\ x - 2 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x^2 = 4 &\\ x ≠ 2 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = ±2 &\\ x ≠ 2 & \end{cases} \end{equation*}$
Ответ: x = −2

4) $\frac{x - 2}{x - 2} = 1$
1 = 1
$\begin{equation*} \begin{cases} 1 = 1 &\\ x - 2 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} 1 = 1 &\\ x ≠ 2 & \end{cases} \end{equation*}$
Ответ: x − любое число, кроме 2.

5) $\frac{2x^2 + 18}{x^2 + 9} = 2$
$\frac{2(x^2 + 9)}{x^2 + 9} = 2$
2 = 2
$\begin{equation*} \begin{cases} 2 = 2 &\\ x^2 + 9 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} 2 = 2 &\\ x^2 ≠ -9 & \end{cases} \end{equation*}$
Ответ: x − любое число.

6) $\frac{x}{x - 5} + \frac{2x - 9}{x - 5} = 0$
$\frac{x + 2x - 9}{x - 5} = 0$
$\frac{3x - 9}{x - 5} = 0$
$\begin{equation*} \begin{cases} 3x - 9 = 0 &\\ x - 5 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} 3x = 9 &\\ x ≠ 5 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 3 &\\ x ≠ 5 & \end{cases} \end{equation*}$
Ответ: x = 3

7) $\frac{5x - 7}{x + 1} - \frac{x - 5}{x + 1} = 0$
$\frac{5x - 7 - (x - 5)}{x + 1} = 0$
$\frac{5x - 7 - x + 5}{x + 1} = 0$
$\frac{4x - 2}{x + 1} = 0$
$\begin{equation*} \begin{cases} 4x - 2 = 0 &\\ x + 1 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} 4x = 2 &\\ x ≠ -1 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 0,5 &\\ x ≠ -1 & \end{cases} \end{equation*}$
Ответ: x = 0,5

8) $\frac{2x + 16}{x + 3} - \frac{1 - 3x}{x + 3} = 0$
$\frac{2x + 16 - (1 - 3x)}{x + 3} = 0$
$\frac{2x + 16 - 1 + 3x}{x + 3} = 0$
$\frac{5x + 15}{x + 3} = 0$
$\frac{5(x + 3)}{x + 3} = 0$
5 ≠ 0
Ответ: нет корней

9) $\frac{2}{x - 1} + \frac{1}{x + 1} = 0$
$\frac{2(x + 1) + x - 1}{(x - 1)(x + 1)} = 0$
$\frac{2x + 2 + x - 1}{x^2 - 1} = 0$
$\frac{3x + 1}{x^2 - 1} = 0$
$\begin{equation*} \begin{cases} 3x + 1 = 0 &\\ x^2 - 1 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} 3x = -1 &\\ x^2 ≠ 1 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = -\frac{1}{3} &\\ x ≠ ±1 & \end{cases} \end{equation*}$
Ответ: $x = -\frac{1}{3}$

10) $\frac{3}{x - 2} = \frac{4}{x + 3}$
$\frac{3}{x - 2} - \frac{4}{x + 3} = 0$
$\frac{3(x + 3) - 4(x - 2)}{(x - 2)(x + 3)} = 0$
$\frac{3x + 9 - 4x + 8}{(x - 2)(x + 3)} = 0$
$\frac{17 - x}{(x - 2)(x + 3)} = 0$
$\begin{equation*} \begin{cases} x - 2 ≠ 0 &\\ x + 3 ≠ 0 &\\ 17 - x = 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x ≠ 2 &\\ x ≠ -3 &\\ x = 17 & \end{cases} \end{equation*}$
Ответ: x = 17

11) $\frac{x}{x - 6} = 2$
$\frac{x}{x - 6} - 2 = 0$
$\frac{x - 2(x - 6)}{x - 6} = 0$
$\frac{x - 2x + 12}{x - 6} = 0$
$\frac{12 - x}{x - 6} = 0$
$\begin{equation*} \begin{cases} 12 - x = 0 &\\ x - 6 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 12 &\\ x ≠ 6 & \end{cases} \end{equation*}$
Ответ: x = 12

12) $\frac{x - 4}{x - 3} = \frac{2x + 1}{2x - 1}$
$\frac{x - 4}{x - 3} - \frac{2x + 1}{2x - 1} = 0$
$\frac{(x - 4)(2x - 1) - (2x + 1)(x - 3)}{(x - 3)(2x - 1)} = 0$
$\frac{2x^2 - 8x - x + 4 - (2x^2 + x - 6x - 3)}{(x - 3)(2x - 1)} = 0$
$\frac{2x^2 - 9x + 4 - (2x^2 - 5x - 3)}{(x - 3)(2x - 1)} = 0$
$\frac{2x^2 - 9x + 4 - 2x^2 + 5x + 3}{(x - 3)(2x - 1)} = 0$
$\frac{7 - 4x}{(x - 3)(2x - 1)} = 0$
$\begin{equation*} \begin{cases} x - 3 ≠ 0 &\\ 2x - 1 ≠ 0 &\\ 7 - 4x = 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x ≠ 3 &\\ 2x ≠ 1 &\\ 4x = 7 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x ≠ 3 &\\ x ≠ \frac{1}{2} &\\ x = \frac{7}{4} = 1\frac{3}{4} & \end{cases} \end{equation*}$
Ответ: $x = 1\frac{3}{4}$

13) $\frac{x + 8}{x} - \frac{6}{x - 2} = 0$
$\frac{(x + 8)(x - 2) - 6x}{x(x - 2)} = 0$
$\frac{x^2 + 8x - 2x - 16 - 6x}{x(x - 2)} = 0$
$\frac{x^2 - 16}{x(x - 2)} = 0$
$\begin{equation*} \begin{cases} x ≠ 0 &\\ x - 2 ≠ 0 &\\ x^2 - 16 = 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x ≠ 0 &\\ x ≠ 2 &\\ x^2 = 16 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x ≠ 0 &\\ x ≠ 2 &\\ x = ±4 & \end{cases} \end{equation*}$
Ответ: x = ±4

14) $\frac{2x}{x - 5} - \frac{x^2 + 15x}{x^2 - 25} = 0$
$\frac{2x}{x - 5} - \frac{x^2 + 15x}{(x - 5)(x + 5)} = 0$
$\frac{2x(x + 5) - (x^2 + 15x)}{(x - 5)(x + 5)} = 0$
$\frac{2x^2 + 10x - x^2 - 15x}{(x - 5)(x + 5)} = 0$
$\frac{x^2 - 5x}{(x - 5)(x + 5)} = 0$
$\frac{x(x - 5)}{(x - 5)(x + 5)} = 0$
$\frac{x}{x + 5} = 0$
$\begin{equation*} \begin{cases} x = 0 &\\ x + 5 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 0 &\\ x ≠ -5 & \end{cases} \end{equation*}$
Ответ: x = 0

15) $3 - \frac{2x^2 - 5x}{x^2 - 3x} = 0$
$\frac{3(x^2 - 3x) - (2x^2 - 5x)}{x^2 - 3x} = 0$
$\frac{3x^2 - 9x - 2x^2 + 5x}{x^2 - 3x} = 0$
$\frac{x^2 - 4x}{x^2 - 3x} = 0$
$\frac{x(x - 4)}{x(x - 3)} = 0$
$\frac{x - 4}{x - 3} = 0$
$\begin{equation*} \begin{cases} x - 4 = 0 &\\ x - 3 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 4 &\\ x ≠ 3 & \end{cases} \end{equation*}$
Ответ: x = 4

208. Решите уравнение:
1) $\frac{x^2 - 1}{x^2 - 2x + 1} = 0$;
2) $\frac{x^2 - 2x + 1}{x^2 - 1} = 0$;
3) $\frac{x + 7}{x - 7} - \frac{2x - 3}{x - 7} = 0$;
4) $\frac{10 - 3x}{x + 8} + \frac{5x + 6}{x + 8} = 0$;
5) $\frac{x - 6}{x - 2} - \frac{x - 8}{x} = 0$;
6) $\frac{2x - 4}{x} - \frac{3x + 1}{x} + \frac{x + 5}{x} = 0$;
7) $\frac{x}{x + 6} - \frac{36}{x^2 + 6x} = 0$;
8) $\frac{2x^2 + 3x + 1}{2x + 1} - x = 1$;
9) $\frac{4}{x - 1} - \frac{4}{x + 1} = 1$.

Решение:

1) $\frac{x^2 - 1}{x^2 - 2x + 1} = 0$
$\frac{(x - 1)(x + 1)}{(x - 1)^2} = 0$
$\frac{x + 1}{x - 1} = 0$
$\begin{equation*} \begin{cases} x + 1 = 0 &\\ x - 1 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = -1 &\\ x ≠ 1 & \end{cases} \end{equation*}$
Ответ: x = −1

2) $\frac{x^2 - 2x + 1}{x^2 - 1} = 0$
$\frac{(x - 1)^2}{(x - 1)(x + 1)} = 0$
$\frac{x - 1}{x + 1} = 0$
$\begin{equation*} \begin{cases} x - 1 = 0 &\\ x^2 - 1 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 1 &\\ x^2 ≠ 1 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 1 &\\ x ≠ ±1 & \end{cases} \end{equation*}$
Ответ: нет корней

3) $\frac{x + 7}{x - 7} - \frac{2x - 3}{x - 7} = 0$
$\frac{x + 7 - (2x - 3)}{x - 7} = 0$
$\frac{x + 7 - 2x + 3}{x - 7} = 0$
$\frac{10 - x}{x - 7} = 0$
$\begin{equation*} \begin{cases} 10 - x = 0 &\\ x - 7 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 10 &\\ x ≠ 7 & \end{cases} \end{equation*}$
Ответ: x = 10

4) $\frac{10 - 3x}{x + 8} + \frac{5x + 6}{x + 8} = 0$
$\frac{10 - 3x + 5x + 6}{x + 8} = 0$
$\frac{2x + 16}{x + 8} = 0$
$\frac{2(x + 8)}{x + 8} = 0$
2 ≠ 0
Ответ: нет корней

5) $\frac{x - 6}{x - 2} - \frac{x - 8}{x} = 0$
$\frac{x(x - 6) - (x - 8)(x - 2)}{x(x - 2)} = 0$
$\frac{x^2 - 6x - (x^2 - 8x - 2x + 16)}{x(x - 2)} = 0$
$\frac{x^2 - 6x - x^2 + 8x + 2x - 16}{x(x - 2)} = 0$
$\frac{4x - 16}{x(x - 2)} = 0$
$\begin{equation*} \begin{cases} 4x - 16 = 0 &\\ x - 2 ≠ 0 &\\ x ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} 4x = 16 &\\ x ≠ 2 &\\ x ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 4 &\\ x ≠ 2 &\\ x ≠ 0 & \end{cases} \end{equation*}$
Ответ: x = 4

6) $\frac{2x - 4}{x} - \frac{3x + 1}{x} + \frac{x + 5}{x} = 0$
$\frac{2x - 4 - (3x + 1) + x + 5}{x} = 0$
$\frac{2x - 4 - 3x - 1 + x + 5}{x} = 0$
$\frac{0}{x} = 0$
$\begin{equation*} \begin{cases} 0 = 0 &\\ x ≠ 0 & \end{cases} \end{equation*}$
Ответ: x − любое число, кроме 0.

7) $\frac{x}{x + 6} - \frac{36}{x^2 + 6x} = 0$
$\frac{x}{x + 6} - \frac{36}{x(x + 6)} = 0$
$\frac{x^2 - 36}{x(x + 6)} = 0$
$\begin{equation*} \begin{cases} x^2 - 36 = 0 &\\ x ≠ 0 &\\ x + 6 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x^2 = 36 &\\ x ≠ 0 &\\ x ≠ -6 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = ±6 &\\ x ≠ 0 &\\ x ≠ -6 & \end{cases} \end{equation*}$
Ответ: x = 6

8) $\frac{2x^2 + 3x + 1}{2x + 1} - x = 1$
$\frac{2x^2 + 3x + 1 - x(2x + 1)}{2x + 1} = 1$
$\frac{2x^2 + 3x + 1 - 2x^2 - x}{2x + 1} = 1$
$\frac{2x + 1}{2x + 1} = 1$
1 = 1
$\begin{equation*} \begin{cases} 1 = 1 &\\ 2x + 1 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} 1 = 1 &\\ 2x ≠ -1 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} 1 = 1 &\\ x ≠ -0,5 & \end{cases} \end{equation*}$
Ответ: x − любое число, кроме −0,5.

9) $\frac{4}{x - 1} - \frac{4}{x + 1} = 1$
$\frac{4}{x - 1} - \frac{4}{x + 1} - 1 = 0$
$\frac{4(x + 1) - 4(x - 1) - (x - 1)(x + 1)}{(x - 1)(x + 1)} = 0$
$\frac{4x + 4 - 4x + 4 - (x^2 - 1)}{(x - 1)(x + 1)} = 0$
$\frac{8 - x^2 +1}{(x - 1)(x + 1)} = 0$
$\frac{9 - x^2}{x^2 - 1} = 0$
$\begin{equation*} \begin{cases} 9 - x^2 = 0 &\\ x^2 - 1 ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x^2 = 9 &\\ x^2 ≠ 1 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = ±3 &\\ x ≠ ±1 & \end{cases} \end{equation*}$
Ответ: x = ±3

209. Какое число нужно вычесть из числителя и знаменателя дроби $\frac{15}{19}$, чтобы получить дробь, равную $\frac{2}{3}$?

Решение:

$\frac{15 - x}{19 - x} = \frac{2}{3}$
$\frac{15 - x}{19 - x} - \frac{2}{3} = 0$
$\frac{3(15 - x) - 2(19 - x)}{3(19 - x)} = 0$
$\frac{45 - 3x - 38 + 2x}{3(19 - x)} = 0$
$\frac{7 - x}{3(19 - x)} = 0$
$\begin{equation*} \begin{cases} 7 - x = 0 &\\ 3(19 - x) ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 7 &\\ 19 - x ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 7 &\\ x ≠ 19 & \end{cases} \end{equation*}$
Ответ: x = 7

210. Какое число нужно прибавить к числителю и знаменателю дроби $\frac{25}{32}$, чтобы получить дробь, равную $\frac{5}{6}$?

Решение:

$\frac{25 + x}{32 + x} = \frac{5}{6}$
$\frac{25 + x}{32 + x} - \frac{5}{6} = 0$
$\frac{6(25 + x) - 5(32 + x)}{6(32 + x)} = 0$
$\frac{150 + 6x - 160 - 5x}{6(32 + x)} = 0$
$\frac{x - 10}{6(32 + x)} = 0$
$\begin{equation*} \begin{cases} x - 10 = 0 &\\ 6(32 + x) ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 10 &\\ 32 + x ≠ 0 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x = 10 &\\ x ≠ -32 & \end{cases} \end{equation*}$
Ответ: x = 10