Ответы к странице 72

285. Вынесите за скобки степень с основанием b и наименьшим из данных показателей:
1) $b^3 + 3b^2$;
2) $b^{-3} + 3b^{-2}$;
3) $b^{-3} + 3b^{2}$.

Решение:

1) $b^3 + 3b^2 = b^2 * b + b^2 * 3 = b^2(b + 3)$

2) $b^{-3} + 3b^{-2}= b^{-3} * 1 + b^{-3} * 3b = b^{-3}(1 + 3b)$

3) $b^{-3} + 3b^{2} = b^{-3} * 1 + b^{-3} * 3b^5 = b^{-3}(1 + 3b^5)$

286. Представьте в виде произведения выражение:
1) $a^{-2} - 4$;
2) $a^{-4}b^{-6} - 1$;
3) $25x^{-8}y^{-12} - z^{-2}$;
4) $a^{-3} + b^{-3}$;
5) $m^{-4} - 6m^{-2}p^{-1} + 9p^{-2}$;
6) $a^{-8} - 49a^{-2}$.

Решение:

1) $a^{-2} - 4 = (a^{-1})^2 - 2^2 = (a^{-1} - 2)(a^{-1} + 2)$

2) $a^{-4}b^{-6} - 1 = (a^{-2}b^{-3})^2 - 1^2 = (a^{-2}b^{-3} - 1)(a^{-2}b^{-3} + 1)$

3) $25x^{-8}y^{-12} - z^{-2} = (5x^{-4}y^{-6})^2 - (z^{-1})^2 = (5x^{-4}y^{-6} - z^{-1})(5x^{-4}y^{-6} + z^{-1})$

4) $a^{-3} + b^{-3} = (a^{-1})^3 + (b^{-1})^3 = (a^{-1} + b^{-1})((a^{-1})^2 - a^{-1}b^{-1} + (b^{-1})^2) = (a^{-1} + b^{-1})(a^{-2} - a^{-1}b^{-1} + b^{-2})$

5) $m^{-4} - 6m^{-2}p^{-1} + 9p^{-2} = (m^{-2})^2 - 2 * m^{-2} * 3p^{-1} + (3p^{-1})^2 = (m^{-2} - 3p^{-1})^2 = (m^{-2} - 3p^{-1})(m^{-2} - 3p^{-1})$

6) $a^{-8} - 49a^{-2} = (a^{-4})^2 - (7a^{-1})^2 = (a^{-4} - 7a^{-1})(a^{-4} + 7a^{-1})$

287. Представьте в виде произведения выражение:
1) $x^{-4} - 25$;
2) $m^{-6} - 8n^{-3}$;
3) $a^{-10} + 8a^{-5}b^{-7} + 16b^{-14}$;
4) $a^{-4} - a^{-2}$.

Решение:

1) $x^{-4} - 25 = (x^{-2})^2 - 5^2 = (x^{-2} - 5)(x^{-2} + 5)$

2) $m^{-6} - 8n^{-3} = (m^{-2})^3 - (2n^{-1})^3 = (m^{-2} - 2n^{-1})((m^{-2})^2 + 2m^{-2}n^{-1} + (2n^{-1})^2) = (m^{-2} - 2n^{-1})(m^{-4} + 2m^{-2}n^{-1} + 4n^{-2})$

3) $a^{-10} + 8a^{-5}b^{-7} + 16b^{-14} = (a^{-5})^2 + 2 * a^{-5} * 4b^{-7} + (4b^{-7})^2 = (a^{-5} + 4b^{-7})^2 = (a^{-5} + 4b^{-7})(a^{-5} + 4b^{-7})$

4) $a^{-4} - a^{-2} = (a^{-2})^2 - (a^{-1})^2 = (a^{-2} - a^{-1})(a^{-2} + a^{-1})$

288. Докажите тождество:
$a^{-8} - b^{-8} = (a^{-1} - b^{-1})(a^{-1} + b^{-1})(a^{-2} + b^{-2})(a^{-4} + b^{-4})$.

Решение:

$a^{-8} - b^{-8} = (a^{-4})^2 - (b^{-4})^2 = (a^{-4} - b^{-4})(a^{-4} + b^{-4}) = ((a^{-2})^2 - (b^{-2})^2)(a^{-4} + b^{-4}) = (a^{-2} - b^{-2})(a^{-2} + b^{-2})(a^{-4} + b^{-4}) = ((a^{-1})^2 - (b^{-1})^2)(a^{-2} + b^{-2})(a^{-4} + b^{-4}) = (a^{-1} - b^{-1})(a^{-1} + b^{-1})(a^{-2} + b^{-2})(a^{-4} + b^{-4})$

289. Упростите выражение:
1) $(a^{-4} + 3)(a^{-4} - 3) - (a^{-4} + 2)^2$;
2) $\frac{m^{-2} - n^{-2}}{m^{-1} + n^{-1}}$;
3) $\frac{2x^{-2} + y^{-2}}{3x^{-2} - 3x^{-1}y^{-1}} - \frac{x^{-1}}{x^{-1} - y^{-1}}$;
4) $\frac{a^{-5} + b^{-5}}{a^{-6}} : \frac{a^{-3}b^{-5} + a^{-8}}{a^{-4}}$.

Решение:

1) $(a^{-4} + 3)(a^{-4} - 3) - (a^{-4} + 2)^2 = ((a^{-4})^2 - 3^2) - (a^{-4} + 2)^2 = a^{-8} - 9 - (a^{-8} + 4a^{-4} + 4) = a^{-8} - 9 - a^{-8} - 4a^{-4} - 4 = -4^{-4} - 13$

2) $\frac{m^{-2} - n^{-2}}{m^{-1} + n^{-1}} = \frac{(m^{-1} - n^{-1})(m^{-1} + n^{-1})}{m^{-1} + n^{-1}} = m^{-1} - n^{-1}$

3) $\frac{2x^{-2} + y^{-2}}{3x^{-2} - 3x^{-1}y^{-1}} - \frac{x^{-1}}{x^{-1} - y^{-1}} = \frac{2x^{-2} + y^{-2} - 3x^{-1} * x^{-1}}{3x^{-1}(x^{-1} - y^{-1})} = \frac{2x^{-2} + y^{-2} - 3x^{-2}}{3x^{-1}(x^{-1} - y^{-1})} = \frac{y^{-2} - x^{-2}}{3x^{-1}(x^{-1} - y^{-1})} = -\frac{(y^{-1} - x^{-1})(y^{-1} + x^{-1})}{3x^{-1}(y^{-1} - x^{-1})} = -\frac{x^{-1} + y^{-1}}{3x^{-1}}$

4) $\frac{a^{-5} + b^{-5}}{a^{-6}} : \frac{a^{-3}b^{-5} + a^{-8}}{a^{-4}} = \frac{a^{-5} + b^{-5}}{a^{-6}} * \frac{a^{-4}}{a^{-3}b^{-5} + a^{-8}} = \frac{a^{-5} + b^{-5}}{a^{-2}} * \frac{1}{a^{-3}(b^{-5} + a^{-5})} = \frac{1}{a^{-5}} = a^5$

290. Упростите выражение:
1) $(x^{-2} - 1)^2 - (x^{-2} - 4)(x^{-2} + 4)$;
2) $\frac{a^{-2} - 10a^{-1}b^{-1} + 25b^{-2}}{a^{-1} - 5b^{-1}}$;
3) $\frac{5m^{-2} + n^{-2}}{4m^{-3} + 4m^{-1}n^{-2}} - \frac{m^{-1}}{m^{-2} + n^{-2}}$;
4) $\frac{b^{-1} + 3c^{-1}}{c^{-2}} * \frac{bc}{b^{-2}c^{-1} + 3b^{-1}c^{-2}}$.

Решение:

1) $(x^{-2} - 1)^2 - (x^{-2} - 4)(x^{-2} + 4) = x^{-4} - 2x^{-2} + 1 - (x^{-4} - 16) = x^{-4} - 2x^{-2} + 1 - x^{-4} + 16 = 17 - 2x^{-2}$

2) $\frac{a^{-2} - 10a^{-1}b^{-1} + 25b^{-2}}{a^{-1} - 5b^{-1}} = \frac{(a^{-1} - 5b^{-1})^2}{a^{-1} - 5b^{-1}} = a^{-1} - 5b^{-1}$

3) $\frac{5m^{-2} + n^{-2}}{4m^{-3} + 4m^{-1}n^{-2}} - \frac{m^{-1}}{m^{-2} + n^{-2}} = \frac{5m^{-2} + n^{-2}}{4m^{-1}(m^{-2} + n^{-2})} - \frac{m^{-1}}{m^{-2} + n^{-2}} = \frac{5m^{-2} + n^{-2} - 4m^{-2}}{4m^{-1}(m^{-2} + n^{-2})} = \frac{m^{-2} + n^{-2}}{4m^{-1}(m^{-2} + n^{-2})} = \frac{1}{4m^{-1}} = \frac{m}{4}$

4) $\frac{b^{-1} + 3c^{-1}}{c^{-2}} * \frac{bc}{b^{-2}c^{-1} + 3b^{-1}c^{-2}} = \frac{b^{-1} + 3c^{-1}}{c^{-2}} * \frac{bc}{b^{-1}c^{-1}(b^{-1} + 3c^{-1})} = \frac{1}{c^{-2}} * \frac{bc}{b^{-1}c^{-1}} = c^2 * b^2c^2 = b^2c^4$

291. Порядок числа a равен −4. определите порядок числа:
1) 10a;
2) 0,1a;
3) 100a;
4) 0,001a;
5) 10000a;
6) 1000000a.

Решение:

1) $10a = 10 * 10^{-4} = 1 * 10^1 * 10^{-4} = 10^{-3}$
Ответ: −3 − порядок числа

2) $0,1a = 0,1 * 10^{-4} = 1 * 10^{-1} * 10^{-4} = 10^{-5}$
Ответ: −5 − порядок числа

3) $100a = 100 * 10^{-4} = 1 * 10^2 * 10^{-4} = 10^{-2}$
Ответ: −2 − порядок числа

4) $0,001a = 1 * 10^{-3} * 10^{-4} = 10^{-7}$
Ответ: −7 − порядок числа

5) $10000a = 1 * 10^4 * 10^{-4} = 10^0$
Ответ: 0 − порядок числа

6) $1000000a = 1 * 10^{6} * 10^{-4} = 10^{2}$
Ответ: 2 − порядок числа

292. Порядок числа b равен 3. Определите порядок числа:
1) 10b;
2) 0,01b;
3) 0,0001b;
4) 1000b.

Решение:

1) $10b = 1 * 10^1 * 10^3 = 10^4$

2) $0,01b = 1 * 10^{-2} * 10^3 = 10^1$

3) $0,0001b = 1 * 10^{-4} * 10^3 = 10^{-1}$

4) $1000b = 1 * 10^3 * 10^3 = 10^6$

293. Выполните вычисления и результат запишите в стандартном виде:
1) $(1,8 * 10^4) * (6 * 10^3)$;
2) $(3 * 10^6) * (5,2 * 10^{-9})$;
3) $\frac{5,4 * 10^5}{9 * 10^8}$;
4) $\frac{1,7 * 10^{-6}}{3,4 * 10^{-4}}$.

Решение:

1) $(1,8 * 10^4) * (6 * 10^3) = (1,8 * 6) * (10^4 * 10^3) = 10,8 * 10^7 = 1,08 * 10^8$

2) $(3 * 10^6) * (5,2 * 10^{-9}) = (3 * 5,2) * (10^6 * 10^{-9}) = 15,6 * 10{-3} = 1,56 * 10^{-2}$

3) $\frac{5,4 * 10^5}{9 * 10^8} = \frac{0,6}{10^3} = 0,6 * 10^{-3} = 6 * 10^{-4}$

4) $\frac{1,7 * 10^{-6}}{3,4 * 10^{-4}} = \frac{10^{-6}}{2 * 10^{-4}} = \frac{10^{-6} * 10^4}{2} = \frac{10^{-2}}{2} = \frac{1}{2 * 10^2} = \frac{1}{200}= 0,005 = 5 * 10^{-3}$

294. Выполните вычисления и результат запишите в стандартном виде:
1) $(1,6 * 10^{-5}) * (4 * 10^7)$;
2) $(5 * 10^{-3}) * (1,8 * 10^{-1})$;
3) $\frac{7 * 10^{-4}}{1,4 * 10^{-6}}$;
4) $\frac{6,4 * 10^{3}}{8 * 10^{-2}}$.

Решение:

1) $(1,6 * 10^{-5}) * (4 * 10^7)= (1,6 * 4) * (10^{-5} * 10^7) = 6,4 * 10^2$

2) $(5 * 10^{-3}) * (1,8 * 10^{-1}) = (5 * 1,8) * (10^{-3} * 10^{-1}) = 9 * 10^{-4}$

3) $\frac{7 * 10^{-4}}{1,4 * 10^{-6}} = \frac{10^{-4} * 10^6}{0,2} = \frac{10^{2}}{\frac{1}{5}} = 5 * 10^2$

4) $\frac{6,4 * 10^{3}}{8 * 10^{-2}} = 0,8 * 10^{3} * 10^{2} = 0,8 * 10^{5} = 8 * 10^4$

295. Расстояние от Земли до Солнца равно $1,5 * 10^8$ км, а скорость света − $3 * 10^8$ м/с. За сколько минут свет от Солнца дойдет до Земли? Ответ округлите до единиц.

Решение:

1) $1,5 * 10^8 = 1,5 * 10^8 * 10^3 = 1,5 * 10^{11}$ (м) − расстояние от Земли до Солнца;
2) $\frac{1,5 * 10^{11}}{3 * 10^8} = \frac{15 * 10^{10}}{3 * 10^8} = 5 * 10^2 = 500$ (с) = $\frac{500}{60} = \frac{50}{6} = \frac{25}{3} = 8\frac{1}{3} ≈ 8$ (мин) − свет от Солнца дойдет до Земли.
Ответ: за 8 минут.