Ответы к странице 137

527. Внесите множитель под знак корня:
1) $7\sqrt{2}$;
2) $3\sqrt{13}$;
3) $-2\sqrt{17}$;
4) $-10\sqrt{14}$;
5) $5\sqrt{8}$;
6) $6\sqrt{a}$;
7) $\frac{1}{4}\sqrt{32}$;
8) $-\frac{2}{3}\sqrt{54}$;
9) $\frac{1}{8}\sqrt{128a}$;
10) $-0,3\sqrt{10b}$;
11) $3\sqrt{\frac{1}{3}}$;
12) $\frac{2}{9}\sqrt{\frac{27}{28}}$.

Решение:

1) $7\sqrt{2} = \sqrt{7^2} * \sqrt{2} = \sqrt{49} * \sqrt{2} = \sqrt{49 * 2} = \sqrt{98}$

2) $3\sqrt{13} = \sqrt{3^2} * \sqrt{13} = \sqrt{9} * \sqrt{13} = \sqrt{9 * 13} = \sqrt{117}$

3) $-2\sqrt{17} = -\sqrt{2^2} * \sqrt{17} = -\sqrt{4} * \sqrt{17} = -\sqrt{4 * 17} = -\sqrt{68}$

4) $-10\sqrt{14} = -\sqrt{10^2} * \sqrt{14} = -\sqrt{100} * \sqrt{14} = -\sqrt{100 * 14} = -\sqrt{1400}$

5) $5\sqrt{8} = \sqrt{5^2} * \sqrt{8} = \sqrt{25} * \sqrt{8} = \sqrt{25 * 8} = \sqrt{200}$

6) $6\sqrt{a} = \sqrt{6^2} * \sqrt{a} = \sqrt{36} * \sqrt{a} = \sqrt{36a}$

7) $\frac{1}{4}\sqrt{32} = \sqrt{(\frac{1}{4})^2} * \sqrt{32} = \sqrt{\frac{1}{16}} * \sqrt{32} = \sqrt{\frac{1}{16} * 32} = \sqrt{2}$

8) $-\frac{2}{3}\sqrt{54} = -\sqrt{(\frac{2}{3})^2} * \sqrt{54} = -\sqrt{\frac{4}{9}} * \sqrt{54} = -\sqrt{\frac{4}{9} * 54} = -\sqrt{4 * 6} = -\sqrt{24}$

9) $\frac{1}{8}\sqrt{128a} = \sqrt{(\frac{1}{8})^2} * \sqrt{128a} = \sqrt{\frac{1}{64}} * \sqrt{128a} = \sqrt{\frac{1}{64} * 128a} = \sqrt{2a}$

10) $-0,3\sqrt{10b} = -\sqrt{0,3^2} * \sqrt{10b} = -\sqrt{0,09} * \sqrt{10b} = -\sqrt{0,09 * 10b} = -\sqrt{0,9b}$

11) $3\sqrt{\frac{1}{3}} = \sqrt{3^2} * \sqrt{\frac{1}{3}} = \sqrt{9} * \sqrt{\frac{1}{3}} = \sqrt{9 * \frac{1}{3}} = \sqrt{3}$

12) $\frac{2}{9}\sqrt{\frac{27}{28}} = \sqrt{(\frac{2}{9})^2} * \sqrt{\frac{27}{28}} = \sqrt{\frac{4}{81}} * \sqrt{\frac{27}{28}} = \sqrt{\frac{4}{81} * \frac{27}{28}} = \sqrt{\frac{1}{3} * \frac{1}{7}} = \sqrt{\frac{1}{21}}$

528. Внесите множитель под знак корня:
1) $2\sqrt{6}$;
2) $9\sqrt{2}$;
3) $-11\sqrt{3}$;
4) $12\sqrt{b}$;
5) $-7\sqrt{3c}$;
6) $-10\sqrt{0,7m}$;
7) $8\sqrt{\frac{n}{8}}$;
8) $-\frac{1}{3}\sqrt{18p}$.

Решение:

1) $2\sqrt{6} = \sqrt{2^2} * \sqrt{6} = \sqrt{4} * \sqrt{6} = \sqrt{4 * 6} = \sqrt{24}$

2) $9\sqrt{2} = \sqrt{9^2} * \sqrt{2} = \sqrt{81} * \sqrt{2} = \sqrt{81 * 2} = \sqrt{162}$

3) $-11\sqrt{3} = -\sqrt{11^2} * \sqrt{3} = -\sqrt{121} * \sqrt{3} = -\sqrt{121 * 3} = -\sqrt{363}$

4) $12\sqrt{b} = \sqrt{12^2} * \sqrt{b} = \sqrt{144} * \sqrt{b} = \sqrt{144b}$

5) $-7\sqrt{3c} = -\sqrt{7^2} * \sqrt{3c} = -\sqrt{49} * \sqrt{3c} = -\sqrt{49 * 3c} = -\sqrt{147c}$

6) $-10\sqrt{0,7m} = -\sqrt{10^2} * \sqrt{0,7m} = -\sqrt{100} * \sqrt{0,7m} = -\sqrt{100 * 0,7m} = -\sqrt{70m}$

7) $8\sqrt{\frac{n}{8}} = \sqrt{8^2} * \sqrt{\frac{n}{8}} = \sqrt{64} * \sqrt{\frac{n}{8}} = \sqrt{64 * \frac{n}{8}} = \sqrt{8n}$

8) $-\frac{1}{3}\sqrt{18p} = -\sqrt{(\frac{1}{3})^2} * \sqrt{18p} = -\sqrt{\frac{1}{9}} * \sqrt{18p} = -\sqrt{\frac{1}{9} * 18p} = -\sqrt{2p}$

529. Упростите выражение:
1) $4\sqrt{a} + 3\sqrt{a} - 5\sqrt{a}$;
2) $6\sqrt{b} + 2\sqrt{b} - 8\sqrt{b}$;
3) $5\sqrt{c} + 3\sqrt{d} - \sqrt{c} + 3\sqrt{d}$;
4) $\sqrt{5} + 7\sqrt{5} - 4\sqrt{5}$.

Решение:

1) $4\sqrt{a} + 3\sqrt{a} - 5\sqrt{a} = \sqrt{a}(4 + 3 - 5) = 2\sqrt{a}$

2) $6\sqrt{b} + 2\sqrt{b} - 8\sqrt{b} = \sqrt{b}(6 + 2 - 8) = 0\sqrt{b} = 0$

3) $5\sqrt{c} + 3\sqrt{d} - \sqrt{c} + 3\sqrt{d} = (5\sqrt{c} - \sqrt{c}) + (3\sqrt{d} + 3\sqrt{d}) = \sqrt{c}(5 - 1) + \sqrt{d}(3 + 3) = 4\sqrt{c} + 6\sqrt{d}$

4) $\sqrt{5} + 7\sqrt{5} - 4\sqrt{5} = \sqrt{5}(1 + 7 - 4) = 4\sqrt{5}$

530. Упростите выражение:
1) $3\sqrt{a} - 2\sqrt{a}$;
2) $\sqrt{c} + 10\sqrt{c} - 14\sqrt{c}$;
3) $9\sqrt{6} - 2\sqrt{3} + 8\sqrt{3} - 3\sqrt{6}$.

Решение:

1) $3\sqrt{a} - 2\sqrt{a} = \sqrt{a}(3 - 2) = \sqrt{a}$

2) $\sqrt{c} + 10\sqrt{c} - 14\sqrt{c} = \sqrt{c}(1 + 10 - 14) = -3\sqrt{c}$

3) $9\sqrt{6} - 2\sqrt{3} + 8\sqrt{3} - 3\sqrt{6} = (9\sqrt{6} - 3\sqrt{6}) + (-2\sqrt{3} + 8\sqrt{3}) = \sqrt{6}(9 - 3) - \sqrt{3}(2 - 8) = 6\sqrt{6} + 6\sqrt{3} = 6(\sqrt{6} + \sqrt{3})$

531. Упростите выражение:
1) $\sqrt{9a} + \sqrt{25a} - \sqrt{49a}$;
2) $\sqrt{64b} - \frac{1}{6}\sqrt{36b}$;
3) $2\sqrt{0,04c} - 0,3\sqrt{16c} + \frac{1}{3}\sqrt{0,81c}$;
4) $0,4\sqrt{100m} + 15\sqrt{\frac{4}{9}m} - 1,2\sqrt{2,25m}$.

Решение:

1) $\sqrt{9a} + \sqrt{25a} - \sqrt{49a} = \sqrt{9} * \sqrt{a} + \sqrt{25} * \sqrt{a} - \sqrt{49} * \sqrt{a} = 3\sqrt{a} + 5\sqrt{a} - 7\sqrt{a} = \sqrt{a}(3 + 5 - 7) = \sqrt{a}$

2) $\sqrt{64b} - \frac{1}{6}\sqrt{36b} = \sqrt{64} * \sqrt{b} - \frac{1}{6} * \sqrt{36} * \sqrt{b} = 8\sqrt{b} - \frac{1}{6} * 6 * \sqrt{b} = 8\sqrt{b} - \sqrt{b} = \sqrt{b}(8 - 1) = 7\sqrt{b}$

3) $2\sqrt{0,04c} - 0,3\sqrt{16c} + \frac{1}{3}\sqrt{0,81c} = 2 * \sqrt{0,04} * \sqrt{c} - 0,3 * \sqrt{16} * \sqrt{c} + \frac{1}{3} * \sqrt{0,81} * \sqrt{c} = 2 * 0,2 * \sqrt{c} - 0,3 * 4 * \sqrt{c} + \frac{1}{3} * 0,9 * \sqrt{c} = 0,4\sqrt{c} - 1,2\sqrt{c} + 0,3\sqrt{c} = \sqrt{c}(0,4 - 1,2 + 0,3) = -0,5\sqrt{c}$

4) $0,4\sqrt{100m} + 15\sqrt{\frac{4}{9}m} - 1,2\sqrt{2,25m} = 0,4 * \sqrt{100} * \sqrt{m} + 15 * \sqrt{\frac{4}{9}} * \sqrt{m} - 1,2 * \sqrt{2,25} * \sqrt{m} = 0,4 * 10 * \sqrt{m} + 15 * \frac{2}{3} * \sqrt{m} - 1,2 * 1,5 * \sqrt{m} = 4\sqrt{m} + 5 * 2\sqrt{m} - 1,8\sqrt{m} = 4\sqrt{m} + 10\sqrt{m} - 1,8\sqrt{m} = \sqrt{m}(4 + 10 - 1,8) = 12,2\sqrt{m}$

532. Упростите выражение:
1) $2\sqrt{4x} + 6\sqrt{16x} - \sqrt{625x}$;
2) $3\sqrt{0,09y} - 0,6\sqrt{144y} + \frac{18}{11}\sqrt{\frac{121}{36}y}$.

Решение:

1) $2\sqrt{4x} + 6\sqrt{16x} - \sqrt{625x} = 2 * \sqrt{4} * \sqrt{x} + 6 * \sqrt{16} * \sqrt{x} - \sqrt{625} * \sqrt{x} = 2 * 2 * \sqrt{x} + 6 * 4 * \sqrt{x} - 25 * \sqrt{x} = 4\sqrt{x} + 24\sqrt{x} - 25\sqrt{x} = \sqrt{x}(4 + 24 - 25) = 3\sqrt{x}$

2) $3\sqrt{0,09y} - 0,6\sqrt{144y} + \frac{18}{11}\sqrt{\frac{121}{36}y} = 3 * \sqrt{0,09} * \sqrt{y} - 0,6 * \sqrt{144} * \sqrt{y} + \frac{18}{11} * \sqrt{\frac{121}{36}} * \sqrt{y} = 3 * 0,3 * \sqrt{y} - 0,6 * 12 * \sqrt{y} + \frac{18}{11} * \frac{11}{6} * \sqrt{y} = 0,9\sqrt{y} - 7,2\sqrt{y} + 3\sqrt{y} = \sqrt{y}(0,9 - 7,2 + 3) = -3,3\sqrt{y}$

533. Упростите выражение:
1) $8\sqrt{2} - \sqrt{32}$;
2) $6\sqrt{3} - \sqrt{27}$;
3) $\sqrt{96} - 3\sqrt{6}$;
4) $2\sqrt{500} - 8\sqrt{5}$;
5) $5\sqrt{7} - \sqrt{700} - 0,5\sqrt{28}$;
6) $2\sqrt{20} - \frac{1}{3}\sqrt{45} - 0,6\sqrt{125}$.

Решение:

1) $8\sqrt{2} - \sqrt{32} = 8\sqrt{2} - \sqrt{16 * 2} = 8\sqrt{2} - \sqrt{16} * \sqrt{2} = 8\sqrt{2} - 4\sqrt{2} = \sqrt{2}(8 - 4) = 4\sqrt{2}$

2) $6\sqrt{3} - \sqrt{27} = 6\sqrt{3} - \sqrt{9 * 3} = 6\sqrt{3} - \sqrt{9} * \sqrt{3} = 6\sqrt{3} - 3\sqrt{3} = \sqrt{3}(6 - 3) = 3\sqrt{3}$

3) $\sqrt{96} - 3\sqrt{6} = \sqrt{16 * 6} - 3\sqrt{6} = \sqrt{16} * \sqrt{6} - 3\sqrt{6} = 4\sqrt{6} - 3\sqrt{6} = \sqrt{6}(4 - 3) = \sqrt{6}$

4) $2\sqrt{500} - 8\sqrt{5} = 2 * \sqrt{100 * 5} - 8\sqrt{5} = 2 * \sqrt{100} * \sqrt{5} - 8\sqrt{5} = 2 * 10 * \sqrt{5} - 8\sqrt{5} = 20\sqrt{5} - 8\sqrt{5} = \sqrt{5}(20 - 8) = 12\sqrt{5}$

5) $5\sqrt{7} - \sqrt{700} - 0,5\sqrt{28} = 5\sqrt{7} - \sqrt{100 * 7} - 0,5\sqrt{4 * 7} = 5\sqrt{7} - \sqrt{100} * \sqrt{7} - 0,5 * \sqrt{4} * \sqrt{7} = 5\sqrt{7} - 10\sqrt{7} - 0,5 * 2 * \sqrt{7} = 5\sqrt{7} - 10\sqrt{7} - \sqrt{7} = \sqrt{7}(5 - 10 - 1) = -6\sqrt{7}$

6) $2\sqrt{20} - \frac{1}{3}\sqrt{45} - 0,6\sqrt{125} = 2 * \sqrt{4 * 5} - \frac{1}{3} * \sqrt{9 * 5} - 0,6 * \sqrt{25 * 5} = 2 * \sqrt{4} * \sqrt{5} - \frac{1}{3} * \sqrt{9} * \sqrt{5} - 0,6 * \sqrt{25} * \sqrt{5} = 2 * 2 * \sqrt{5} - \frac{1}{3} * 3 * \sqrt{5} - 0,6 * 5 * \sqrt{5} = 4\sqrt{5} - \sqrt{5} - 3\sqrt{5} = \sqrt{5}(4 - 1 - 3) = 0 * \sqrt{5} = 0$

534. Рациональным или иррациональным является значение выражения:
1) $\sqrt{48} - 6 - 4\sqrt{3}$;
2) $\sqrt{162} - 9\sqrt{2} + \sqrt{27}$?

Решение:

1) $\sqrt{48} - 6 - 4\sqrt{3} = \sqrt{16 * 3} - 6 - 4\sqrt{3} = 4\sqrt{3} - 6 - 4\sqrt{3} = -6$ − рациональное число

2) $\sqrt{162} - 9\sqrt{2} + \sqrt{27} = \sqrt{81 * 2} - 9\sqrt{2} + \sqrt{9 * 3} = 9\sqrt{2} - 9\sqrt{2} + 3\sqrt{3} = 3\sqrt{3}$ − иррациональное число

535. Упростите выражение:
1) $4\sqrt{700} - 27\sqrt{7}$;
2) $\sqrt{75} - 6\sqrt{3}$;
3) $2\sqrt{50} - 8\sqrt{2}$;
4) $5\sqrt{12} - 7\sqrt{3}$;
5) $3\sqrt{72} - 4\sqrt{2} + 2\sqrt{98}$;
6) $\frac{1}{3}\sqrt{108} + \sqrt{363} - \frac{2}{9}\sqrt{243}$.

Решение:

1) $4\sqrt{700} - 27\sqrt{7} = 4\sqrt{100 * 7} - 27\sqrt{7} = 4 * 10\sqrt{7} - 27\sqrt{7} = 40\sqrt{7} - 27\sqrt{7} = 13\sqrt{7}$

2) $\sqrt{75} - 6\sqrt{3} = \sqrt{25 * 3} - 6\sqrt{3} = 5\sqrt{3} - 6\sqrt{3} = -1\sqrt{3} = -\sqrt{3}$

3) $2\sqrt{50} - 8\sqrt{2} = 2\sqrt{25 * 2} - 8\sqrt{2} = 2 * 5\sqrt{2} - 8\sqrt{2} = 10\sqrt{2} - 8\sqrt{2} = 2\sqrt{2}$

4) $5\sqrt{12} - 7\sqrt{3} = 5\sqrt{4 * 3} - 7\sqrt{3} = 5 * 2\sqrt{3} - 7\sqrt{3} = 10\sqrt{3} - 7\sqrt{3} = 3\sqrt{3}$

5) $3\sqrt{72} - 4\sqrt{2} + 2\sqrt{98} = 3\sqrt{36 * 2} - 4\sqrt{2} + 2\sqrt{49 * 2} = 3 * 6\sqrt{2} - 4\sqrt{2} + 2 * 7\sqrt{2} = 18\sqrt{2} - 4\sqrt{2} + 14\sqrt{2} = 28\sqrt{2}$

6) $\frac{1}{3}\sqrt{108} + \sqrt{363} - \frac{2}{9}\sqrt{243} = \frac{1}{3}\sqrt{36 * 3} + \sqrt{121 * 3} - \frac{2}{9}\sqrt{81 * 3} = \frac{1}{3} * 6\sqrt{3} + 11\sqrt{3} - \frac{2}{9} * 9\sqrt{3} = 2\sqrt{3} + 11\sqrt{3} - 2\sqrt{3} = 11\sqrt{3}$