Ответы к странице 74

304. Для откачивания воды из затопленного помещения были задействованы три насоса. Первый из них может выкачать всю воду за 12 ч, второй − за 15 ч, а третий − за 20 ч. Сначала в течении 3 ч работали первый и второй насосы, а затем подключили третий насос. За какое время была откачана вся вода?

Решение:

Примем весь объем работы за единицу, тогда:
1) $\frac{1}{12}$ (работы/час) − производительность первого насоса;
2) $\frac{1}{15}$ (работы/час) − производительность второго насоса;
3) $\frac{1}{20}$ (работы/час) − производительность третьего насоса;
4) $\frac{1}{12} + \frac{1}{15} = \frac{5 + 4}{60} = \frac{9}{60}$ (работы/час) − производительность первого и второго насоса вместе;
5) $\frac{9}{60} + \frac{1}{20} = \frac{9 + 3}{60} = \frac{12}{60} = \frac{1}{5}$ (работы/час) − производительность трех насосов вместе;
6) $3 * \frac{9}{60} = \frac{9}{20}$ (работы) − было выполнено за первые 3 часа;
7) $1 - \frac{9}{20} = \frac{20 - 9}{20} = \frac{11}{20}$ (работы) − осталось выполнить;
8) $\frac{11}{20} : \frac{1}{5} = \frac{11}{20} * \frac{5}{1} = \frac{11}{4} = 2\frac{3}{4}$ (ч) − работали вместе все три насоса;
9) $3 + 2\frac{3}{4} = 5\frac{3}{4}$ (ч) = $5\frac{45}{60}$ (ч) = 5 ч 45 мин − время, за которое была откачана вся вода.
Ответ: за 5 ч 45 мин

305. Тетрадь стоит 19 р. У покупателя имеются монеты только по 5 р., а у продавца − только по 2 р. Может ли покупатель рассчитаться за тетрадь без дополнительно размена денег? В случае утвердительного ответа определите, какое наименьшее количество монет соответствующего достоинства должны иметь покупатель и продавец.

Решение:

Чтобы покупатель смог рассчитаться за тетради без дополнительного размена денег, необходимо, чтобы сдача была четной суммой, тогда:
1) 5 * 5 = 25 (рублей) − должен заплатить покупатель отдав продавцу 5 монет по 5 рублей;
2) 25 − 19 = 6 (рублей) − составит сдача;
3) 6 : 2 = 3 (монеты) − по 2 рубля должен сдать продавец покупателю.
Ответ: Да, может. Для этого необходимо, чтобы у покупателя как минимум было 5 монет по 5 рублей, а у продавца 3 монеты по 2 рубля.

306. Найдите значение функции, $y = -\frac{14}{x}$, если:
1) x = 2;
2) x = −1;
3) x = 3,5;
4) x = −6.

Решение:

1) $y = -\frac{14}{x}$
при x = 2:
$y = -\frac{14}{2} = -7$

2) $y = -\frac{14}{x}$
при x = −1:
$y = -\frac{14}{-1} = 14$

3) $y = -\frac{14}{x}$
при x = 3,5:
$y = -\frac{14}{3,5} = \frac{140}{35} = -4$

4) $y = -\frac{14}{x}$
при x = −6:
$y = -\frac{14}{-6} = \frac{7}{3} = 2\frac{1}{3}$

307. Функция задана формулой $y = \frac{x + 2}{x - 6}$. Какова область определения данной функции? Заполните таблицу, вычислив соответствующие значения функции.

x −3 −2 −1 0 1 2 3
y
Решение
$y = \frac{x + 2}{x - 6}$
x − 6 ≠ 0
x ≠ 6
Область определения функции являются любые значения x, кроме x = 6.
$y = \frac{x + 2}{x - 6}$
при x = −3:
$y = \frac{-3 + 2}{-3 - 6} = \frac{-1}{-9} = \frac{1}{9}$
при x = −2:
$y = \frac{-2 + 2}{-2 - 6} = \frac{0}{-8} = 0$
при x = −1:
$y = \frac{-1 + 2}{-1 - 6} = \frac{1}{-7} = -\frac{1}{7}$
при x = 0:
$y = \frac{0 + 2}{0 - 6} = \frac{2}{-6} = -\frac{1}{3}$
при x = 1:
$y = \frac{1 + 2}{1 - 6} = \frac{3}{-5} = -\frac{3}{5}$
при x = 2:
$y = \frac{2 + 2}{2 - 6} = \frac{4}{-4} = -1$
при x = 3:
$y = \frac{3 + 2}{3 - 6} = \frac{5}{-3} = -1\frac{2}{3}$

x −3 −2 −1 0 1 2 3
y $\frac{1}{9}$ 0 $-\frac{1}{7}$ $-\frac{1}{3}$ $-\frac{3}{5}$ −1 $-1\frac{2}{3}$

308. Постройте график функции y = 2x − 1. Проходит ли этот график через точку:
1) A(30;59);
2) B(−15;−29)?

Решение:

y = 2x − 1
х 0 1
у -1 1

1)
A(30;59)
59 = 2 * 30 − 1
59 = 60 − 1
59 = 59
График функции y = 2x − 1 проходит через точку A(30;59).
2)
B(−15;−29)
−29 = 2 * (−15) − 1
−29 = −30 − 1
−29 ≠ −31
График функции y = 2x − 1 не проходит через точку B(−15;−29).

309. Не выполняя построения, найдите координаты точки пересечения графиков функций y = 2,7x − 8 и y = 1,2x + 7.

Решение:

2,7x − 8 = 1,2x + 7
2,7x − 1,2x = 7 + 8
1,5x = 15
15x = 150
x = 10
y = 2,7x − 8 = 2,7 * 10 − 8 = 27 − 8 = 19
Ответ: точка пересечения графиков (10;19)

310. Решите графически систему уравнений:
$\begin{equation*} \begin{cases} 2x - y = 3 &\\ 3x + y = 7 & \end{cases} \end{equation*}$

Решение:

$\begin{equation*} \begin{cases} 2x - y = 3 &\\ 3x + y = 7 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} y = 2x - 3 &\\ y = 7 - 3x & \end{cases} \end{equation*}$
y = 2x − 3
х 0 1
у -3 -1
y = 7 − 3x
х 0 1
у 7 4

Ответ: (2;1)

№311. По окончании теннисного турнира, который проводился по олимпийской системе (проигравший выбывает), оказалось, что только 32 участника выиграли больше встреч, чем проиграли. Сколько теннисистов принимало участие в турнире?

Решение:

В первом круге половина сразу проиграла и отсеялась. Во втором круге отсеялась еще половина от той половины или четверть от общего количества (у них 1 победа и 1 поражение). Оставшаяся четверть -  те, у кого 2 победы и ни одного поражения (выиграли больше встреч, чем проиграли) - это 32 человека.
32 * 4 = 128 (т.) - принимало участие в турнире.
Ответ: 128 теннисистов.

Вариант решения через х:

Пусть x теннисистов принимало участие в турнире, тогда
1) $\frac{1}{2}x$ теннисистов осталось в турнире после первого круга, причем выбывшие участники проиграли по одной встрече и не выиграли ни одной;
2) $\frac{1}{2} * \frac{1}{2}x = \frac{1}{4}x$ теннисистов осталось в турнире после второго круга, причем выбывшие участники проиграли по одной встрече и выиграли по одной.
Следовательно, оставшиеся участники уже выиграли по две встречи и даже после возможного проигрыша в следующем круге у оставшихся теннисистов будет выигрышных встреч больше, чем проигранных.
Только 32 участника выиграли больше встреч, чем проиграли.
Составим уравнение:
$\frac{1}{4}x = 32$
x = 32 * 4
x = 128 (теннисистов) − принимало участие в турнире.
Ответ: 128 теннисистов.