Ответы к странице 22
73. Упростите выражение:
1) $\frac{x}{y - 1} + \frac{2}{1 - y}$;
2) $\frac{3c}{c - d} + \frac{3d}{d - c}$;
3) $\frac{3m + 2n}{2m - 3n} - \frac{m - 8n}{3n - 2m}$;
4) $\frac{b^2}{2b - 14} + \frac{49}{14 - 2b}$.
Решение:
1) $\frac{x}{y - 1} + \frac{2}{1 - y} = \frac{x}{y - 1} - \frac{2}{y - 1} = \frac{x - 2}{y - 1}$
2) $\frac{3c}{c - d} + \frac{3d}{d - c} = \frac{3c}{c - d} - \frac{3d}{c - d} = \frac{3c - 3d}{c - d} = \frac{3(c - d)}{c - d} = 3$
3) $\frac{3m + 2n}{2m - 3n} - \frac{m - 8n}{3n - 2m} = \frac{3m + 2n}{2m - 3n} + \frac{m - 8n}{2m - 3n} = \frac{3m + 2n + m - 8n}{2m - 3n} = \frac{4m - 6n}{2m - 3n} = \frac{2(2m - 3n)}{2m - 3n} = 2$
4) $\frac{b^2}{2b - 14} + \frac{49}{14 - 2b} = \frac{b^2}{2b - 14} - \frac{49}{2b - 14} = \frac{b^2 - 49}{2b - 14} = \frac{(b - 7)(b + 7)}{2(b - 7)} = \frac{b + 7}{2}$
74. Найдите значение выражения:
1) $\frac{a^2 - 48}{a - 8} - \frac{16}{a - 8}$ при a = 32;
2) $\frac{c^2 + 3c + 7}{c^3 - 8} + \frac{c + 3}{8 - c^3}$ при c = −3.
Решение:
1) $\frac{a^2 - 48}{a - 8} - \frac{16}{a - 8} = \frac{a^2 - 48 - 16}{a - 8} = \frac{a^2 - 64}{a - 8} = \frac{(a - 8)(a + 8)}{a - 8} = a + 8$
при a = 32:
a + 8 = 32 + 8 = 40
2) $\frac{c^2 + 3c + 7}{c^3 - 8} + \frac{c + 3}{8 - c^3} = \frac{c^2 + 3c + 7}{c^3 - 8} - \frac{c + 3}{c^3 - 8} = \frac{c^2 + 3c + 7 - (c + 3)}{c^3 - 8} = \frac{c^2 + 3c + 7 - c - 3}{c^3 - 8} = \frac{c^2 + 2c + 4}{(c - 2)(c^2 + 2c + 4)} = \frac{1}{c - 2}$
при c = −3:
$\frac{1}{c - 2} = \frac{1}{-3 - 2} = \frac{1}{-5} = -\frac{1}{5}$
75. Найдите значение выражения:
1) $\frac{5x + 3}{x^2 - 16} + \frac{6x - 1}{16 - x^2}$ при x = −4,1;
2) $\frac{a^2 + a}{a^2 - 9} - \frac{7a - 9}{a^2 - 9}$ при a = 7.
Решение:
1) $\frac{5x + 3}{x^2 - 16} + \frac{6x - 1}{16 - x^2} = \frac{5x + 3}{x^2 - 16} - \frac{6x - 1}{x^2 - 16} = \frac{5x + 3 - (6x - 1)}{x^2 - 16} = \frac{5x + 3 - 6x + 1}{x^2 - 16} = \frac{-x + 4}{x^2 - 16} = \frac{-(x - 4)}{(x - 4)(x + 4)} = \frac{-1}{x + 4} = -\frac{1}{x + 4}$
при x = −4,1:
$-\frac{1}{x + 4} = -\frac{1}{-4,1 + 4} = -\frac{1}{-0,1} = \frac{1}{\frac{1}{10}} = 10$
2) $\frac{a^2 + a}{a^2 - 9} - \frac{7a - 9}{a^2 - 9} = \frac{a^2 + a - (7a + 9)}{a^2 - 9} = \frac{a^2 + a - 7a - 9}{a^2 - 9} = \frac{a^2 - 6a - 9}{a^2 - 9} = \frac{(a - 3)^2}{(a - 3)(a + 3)} = \frac{a - 3}{a + 3}$
при a = 7:
$\frac{a - 3}{a + 3} = \frac{7 - 3}{7 + 3} = \frac{4}{10} = 0,4$
76. Упростите выражение:
1) $\frac{5n - 1}{20n} - \frac{7n - 8}{20n} - \frac{8n + 7}{20n}$;
2) $\frac{9m + 2}{m^2 - 4} - \frac{m - 9}{4 - m^2} + \frac{1 - 7m}{m^2 - 4}$;
3) $\frac{3k}{k^3 - 1} + \frac{4k + 1}{1 - k^3} + \frac{k^2}{1 - k^3}$.
Решение:
1) $\frac{5n - 1}{20n} - \frac{7n - 8}{20n} - \frac{8n + 7}{20n} = \frac{5n - 1 - (7n - 8) - (8n + 7)}{20n} = \frac{5n - 1 - 7n + 8 - 8n - 7}{20n} = \frac{-10n}{20n} = -\frac{1}{2}$
2) $\frac{9m + 2}{m^2 - 4} - \frac{m - 9}{4 - m^2} + \frac{1 - 7m}{m^2 - 4} = \frac{9m + 2}{m^2 - 4} + \frac{m - 9}{m^2 - 4} + \frac{1 - 7m}{m^2 - 4} = \frac{9m + 2 + m - 9 + 1 - 7m}{m^2 - 4} = \frac{3m - 6}{m^2 - 4} = \frac{3(m - 2)}{(m - 2)(m + 2)} = \frac{3}{m + 2}$
3) $\frac{3k}{k^3 - 1} + \frac{4k + 1}{1 - k^3} + \frac{k^2}{1 - k^3} = \frac{3k}{k^3 - 1} - \frac{4k + 1}{k^3 - 1} - \frac{k^2}{k^3 - 1} = \frac{3k - (4k + 1) - k^2}{k^3 - 1} = \frac{3k - 4k - 1 - k^2}{k^3 - 1} = \frac{-k^2 - k - 1}{(k - 1)(k^2 + k + 1)} = \frac{-(k^2 + k + 1)}{(k - 1)(k^2 + k + 1)} = \frac{-1}{k - 1} = -\frac{1}{k - 1} = \frac{1}{1 - k}$
77. Упростите выражение:
1) $\frac{6a - 1}{16a - 8} + \frac{4a - 7}{16a - 8} + \frac{-2a - 2}{8 - 16a}$;
2) $\frac{2a^2 + 12a}{a^2 - 25} + \frac{8a - 9}{25 - a^2} - \frac{a^2 + 14a - 16}{a^2 - 25}$.
Решение:
1) $\frac{6a - 1}{16a - 8} + \frac{4a - 7}{16a - 8} + \frac{-2a - 2}{8 - 16a} = \frac{6a - 1}{16a - 8} + \frac{4a - 7}{16a - 8} - \frac{-2a - 2}{16a - 8} = \frac{6a - 1 + 4a - 7 - (-2a - 2)}{16a - 8} = \frac{6a - 1 + 4a - 7 + 2a + 2}{16a - 8} = \frac{12a - 6}{16a - 8} = \frac{6(2a - 1)}{8(2a - 1)} = \frac{3}{4}$
2) $\frac{2a^2 + 12a}{a^2 - 25} + \frac{8a - 9}{25 - a^2} - \frac{a^2 + 14a - 16}{a^2 - 25} = \frac{2a^2 + 12a}{a^2 - 25} - \frac{8a - 9}{a^2 - 25} - \frac{a^2 + 14a - 16}{a^2 - 25} = \frac{2a^2 + 12a - (8a - 9) - (a^2 + 14a - 16)}{a^2 - 25} = \frac{2a^2 + 12a - 8a + 9 - a^2 - 14a + 16}{a^2 - 25} = \frac{a^2 - 10a + 25}{a^2 - 25} = \frac{(a - 5)^2}{(a - 5)(a + 5)} = \frac{a - 5}{a + 5}$
78. Представьте в виде дроби выражение:
1) $\frac{15 - 8a}{(a - 1)^2} - \frac{14 - 7a}{(1 - a)^2}$;
2) $\frac{3b^2 + 12}{(b - 2)^3} + \frac{12b}{(2 - b)^3}$;
3) $\frac{m^2 - 8n}{(m - 2)(n - 5)} - \frac{2m - 8n}{(2 - m)(5 - n)}$.
Решение:
1) $\frac{15 - 8a}{(a - 1)^2} - \frac{14 - 7a}{(1 - a)^2} = \frac{15 - 8a}{(a - 1)^2} - \frac{14 - 7a}{(a - 1)^2} = \frac{15 - 8a - (14 - 7a)}{(a - 1)^2} = \frac{15 - 8a - 14 + 7a}{(a - 1)^2} = \frac{1 - a}{(1 - a)^2} = \frac{1}{1 - a}$
2) $\frac{3b^2 + 12}{(b - 2)^3} + \frac{12b}{(2 - b)^3} = \frac{3b^2 + 12}{(b - 2)^3} - \frac{12b}{(b - 2)^3} = \frac{3b^2 + 12 - 12b}{(b - 2)^3} = \frac{3(b^2 - 4b + 4)}{(b - 2)^3} = \frac{3(b - 2)^2}{(b - 2)^3} = \frac{3}{b - 2}$
3) $\frac{m^2 - 8n}{(m - 2)(n - 5)} - \frac{2m - 8n}{(2 - m)(5 - n)} = \frac{m^2 - 8n}{(m - 2)(n - 5)} - \frac{2m - 8n}{(m - 2)(n - 5)} = \frac{m^2 - 8n - (2m - 8n)}{(m - 2)(n - 5)} = \frac{m^2 - 8n - 2m + 8n}{(m - 2)(n - 5)} = \frac{m^2 - 2m}{(m - 2)(n - 5)} = \frac{m(m - 2)}{(m - 2)(n - 5)} = \frac{m}{n - 5}$
79. Упростите выражение:
1) $\frac{x^2 - 16x}{(x - 7)^4} + \frac{2x + 49}{(7 - x)^4}$;
2) $\frac{y^2 + y}{(y - 6)(y + 2)} + \frac{y + 36}{(6 - y)(2 + y)}$.
Решение:
1) $\frac{x^2 - 16x}{(x - 7)^4} + \frac{2x + 49}{(7 - x)^4} = \frac{x^2 - 16x}{(x - 7)^4} + \frac{2x + 49}{(x - 7)^4} = \frac{x^2 - 16x + 2x + 49}{(x - 7)^4} = \frac{x^2 - 14x + 49}{(x - 7)^4} = \frac{(x - 7)^2}{(x - 7)^4} = \frac{1}{(x - 7)^2}$
2) $\frac{y^2 + y}{(y - 6)(y + 2)} + \frac{y + 36}{(6 - y)(2 + y)} = \frac{y^2 + y}{(y - 6)(y + 2)} - \frac{y + 36}{(y - 6)(y + 2)} = \frac{y^2 + y - y - 36}{(y - 6)(y + 2)} = \frac{y^2 - 36}{(y - 6)(y + 2)} = \frac{(y - 6)(y + 6)}{(y - 6)(y + 2)} = \frac{y + 6}{y + 2}$
80. Докажите тождество:
1) $\frac{(a + b)^2}{4ab} - \frac{(a - b)^2}{4ab} = 1$;
2) $\frac{(a + b)^2}{a^2 + b^2} + \frac{(a - b)^2}{a^2 + b^2} = 2$.
Решение:
1) $\frac{(a + b)^2}{4ab} - \frac{(a - b)^2}{4ab} = 1$
$\frac{a^2 + 2ab + b^2 - (a^2 - 2ab + b^2)}{4ab} = 1$
$\frac{a^2 + 2ab + b^2 - a^2 + 2ab - b^2}{4ab} = 1$
$\frac{4ab}{4ab} = 1$
1 = 1
2) $\frac{(a + b)^2}{a^2 + b^2} + \frac{(a - b)^2}{a^2 + b^2} = 2$
$\frac{a^2 + 2ab + b^2 + a^2 - 2ab + b^2}{a^2 + b^2} = 2$
$\frac{2a^2 + 2b^2}{a^2 + b^2} = 2$
$\frac{2(a^2 + b^2)}{a^2 + b^2} = 2$
2 = 2
81. Докажите, что при всех допустимых значениях переменной x значение выражения $\frac{12x - 25}{20x - 15} + \frac{8x + 10}{20x - 15}$ не зависит от значения x.
Решение:
$\frac{12x - 25}{20x - 15} + \frac{8x + 10}{20x - 15} = \frac{12x - 25 + 8x + 10}{20x - 15} = \frac{20x - 15}{20x - 15} = 1$, следовательно при всех допустимых значениях переменной x значение выражения не зависит от значения x и будет равно 1.
82. Докажите, что при всех допустимых значениях переменной y значение выражения $\frac{17y + 5}{21y - 3} - \frac{9 - 11y}{21y - 3}$ не зависит от значения y.
Решение:
$\frac{17y + 5}{21y - 3} - \frac{9 - 11y}{21y - 3} = \frac{17y + 5 - (9 - 11y)}{21y - 3} = \frac{17y + 5 - 9 + 11y}{21y - 3} = \frac{28y - 4}{21y - 3} = \frac{4(7y - 1)}{3(7y - 1)} = \frac{4}{3} = 1\frac{1}{3}$, следовательно при всех допустимых значениях переменной y значение выражения не зависит от значения y и будет равно $1\frac{1}{3}$.
83. Докажите, что при всех допустимых значениях переменной выражение $\frac{a^2 - 6}{(a - 2)^4} - \frac{7a - 4}{(a - 2)^4} + \frac{3a + 6}{(a - 2)^4}$ принимает положительные значения.
Решение:
$\frac{a^2 - 6}{(a - 2)^4} - \frac{7a - 4}{(a - 2)^4} + \frac{3a + 6}{(a - 2)^4} = \frac{a^2 - 6 - (7a - 4) + 3a + 6}{(a - 2)^4} = \frac{a^2 - 6 - 7a + 4 + 3a + 6}{(a - 2)^4} = \frac{a^2 - 4a + 4}{(a - 2)^4} = \frac{(a - 2)^2}{(a - 2)^4} = \frac{1}{(a - 2)^2}$
$(a - 2)^2 ≠ 0$
a − 2 ≠ 0
a ≠ 2
так как числитель больше нуля (1 > 0) и знаменатель больше нуля ($(a - 2)^2 > 0$, при a ≠ 2), то выражение при любом допустимом значении переменной принимает положительные значения.