Ответы к странице 108

429. Запишите множество корней уравнения:
1) x(x − 1) = 0;
2) $(x - 2)(x^2 - 4) = 0$;
3) x = 2;
4) $x^2 + 3 = 0$.

Решение:

1) x(x − 1) = 0
x = 0
или
x − 1 = 0
x = 1
Ответ: {0; 1}

2) $(x - 2)(x^2 - 4) = 0$
x − 2 = 0
x = 2
или
$x^2 - 4 = 0$
$x^2 = 4$
x = ±2
Ответ: {−2; 2}

3) x = 2
Ответ: {2}

4) $x^2 + 3 = 0$
$x^2 = -3$ − нет корней
Ответ: {∅}

430. Задайте с помощью перечисления элементов множество:
1) правильных дробей со знаменателем 7;
2) правильных дробей, знаменатель которых не больше 4;
3) букв слова "математика";
4) цифр числа 5555.

Решение:

1) {$\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \frac{7}{7}$}

2) {$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{2}{4}, \frac{3}{4}$}

3) {м, а, т, е, и, к}

4) {5}

431. Равны ли множества A и B, если:
1) A = {1, 2}, B = {2, 1};
2) A = {(1; 0)}, B = {(0; 1)};
3) A = {1}, B = {{1}}?

Решение:

1) A = {1, 2}, B = {2, 1}
A = B

2) A = {(1; 0)}, B = {(0; 1)}
A ≠ B

3) A = {1}, B = {{1}}
A ≠ B

432. Равны ли множества A и B, если:
1) A − множество корней уравнения |x| = x, B − множество неотрицательных чисел;
2) A − множество четырехугольников, у которых противоположные стороны попарно равны; B − множество четырехугольников, у которых диагонали точкой пересечения делятся пополам?

Решение:

1) |x| = x
x ≥ 0, следовательно A = B

2) A = B

433. Какие из следующих множеств равны пустому множеству:
1) множество треугольников, сумма углов которых равна 181°;
2) множество горных вершин высотой более 8800 м;
3) множество остроугольных треугольников, медиана которых равна половине стороны, к которой она проведена;
4) множество функций, графиками которых являются окружности?

Решение:

1) Пустое множество, так как сумма углов любого треугольника всегда равна 180°.

2) Не является пустым множеством, так как высота Джомолунгмы (Эвереста) равна 8848 м.

3) Не является пустым множеством, так как существуют такие остроугольные треугольники медиана которых равна половине стороны, к которой она проведена.

4) Пустое множество, так как окружность не может быть графиком не одной из функций.

434. Упростите выражение:
1) $\frac{5b}{b - 3} - \frac{b + 6}{2b - 6} * \frac{90}{b^2 + 6b}$;
2) $\frac{b + 2}{b^2 - 2b + 1} : \frac{b^2 - 4}{3b - 3} - \frac{3}{b - 2}$.

Решение:

1) $\frac{5b}{b - 3} - \frac{b + 6}{2b - 6} * \frac{90}{b^2 + 6b} = \frac{5b}{b - 3} - \frac{b + 6}{2(b - 3)} * \frac{90}{b(b + 6)} = \frac{5b}{b - 3} - \frac{1}{b - 3} * \frac{45}{b} = \frac{5b}{b - 3} - \frac{45}{b(b - 3)} = \frac{5b^2 - 45}{b(b - 3)} = \frac{5(b^2 - 9)}{b(b - 3)} = \frac{5(b - 3)(b + 3)}{b(b - 3)} = \frac{5(b + 3)}{b}$

2) $\frac{b + 2}{b^2 - 2b + 1} : \frac{b^2 - 4}{3b - 3} - \frac{3}{b - 2} = \frac{b + 2}{(b - 1)^2} : \frac{(b - 2)(b + 2)}{3(b - 1)} - \frac{3}{b - 2} = \frac{b + 2}{(b - 1)^2} * \frac{3(b - 1)}{(b - 2)(b + 2)} - \frac{3}{b - 2} = \frac{1}{b - 1} * \frac{3}{b - 2} - \frac{3}{b - 2} = \frac{3}{b - 2}(\frac{1}{b - 1} - 1) = \frac{3}{b - 2} * \frac{1 - (b - 1)}{b - 1} = \frac{3}{b - 2} * \frac{1 - b + 1}{b - 1} = \frac{3}{b - 2} * \frac{2 - b}{b - 1} = -\frac{3}{2 - b} * \frac{2 - b}{b - 1} = -\frac{3}{b - 1} = \frac{3}{1 - b}$

435. Моторная лодка проплыла 36 км по течению реки за 3 ч и 36,8 км против течения за 4 ч. Какова скорость течения реки?

Решение:

1) 36 : 3 = 12 (км/ч) − скорость лодки по течению реки;
2) 36,8 : 4 = 9,2 (км/ч) − скорость лодки против течения реки;
3) 12 − 9,2 = 2,8 (км/ч) − удвоенная скорость течения реки;
4) 2,8 : 2 = 1,4 (км/ч) − скорость течения реки.
Ответ: 1,4 км/ч

436. В коробке лежат 42 карандаша, из них 14 карандашей − красные, 16 карандашей − синие, а остальные − зеленые. Какова вероятность того, что наугад взятый карандаш не будет ни красным, ни синим?

Решение:

1/) 42 − (14 + 16) = 42 − 30 = 12 (карандашей) − зеленых (не красных и не синих);
2) $\frac{12}{42} = \frac{2}{7}$ − вероятность того, что наугад взятый карандаш не будет ни красным, ни синим.
Ответ: $\frac{2}{7}$

№437. Петя и Коля ежедневно записывают по одному числу. В первый день каждый из мальчиков записал число 1. В каждый последующий день Петя записывает число 1, а Коля − число, равное сумме чисел, записанных мальчиками за предыдущие дни. Может ли в какой−то день Коля записать число, оканчивающееся на 101?

Решение:

Составим таблицу записей мальчиков:
день Петя Коля
1         1        1
2         1         2
3         1         5
4         1         11
5         1         23
6         1         47
7         1         95
8         1         191
Заметим, что начиная с третьего дня все числа, записанные Колей, являются нечётными. Действительно, если в некоторый день, начиная со второго, Коля записал число x, то на следующий день он запишет число 2x + 1.
Предположим, что в некоторый день Коля записал число, заканчивающееся на 101. Тогда в предыдущий день им было записано число, заканчивающееся на 50, а такое число является чётным. Получили противоречие.
Ответ: Коля не может записать число, оканчивающееся на 101.