Ответы к странице 49-50
Задание №2 "Проверьте себя" в тестовой форме
1. Представьте в виде дроби выражение $\frac{12m^4}{n^{10}} * \frac{n^5}{36m^8}$.
А) $\frac{1}{3m^2n^2}$
Б) $\frac{1}{3m^4n^5}$
В) $\frac{3}{m^2n^2}$
Г) $\frac{3}{m^4n^5}$
Решение:
$\frac{12m^4}{n^{10}} * \frac{n^5}{36m^8} = \frac{1}{n^{5}} * \frac{1}{3m^4} = \frac{1}{3m^4n^5}$
Ответ: Б) $\frac{1}{3m^4n^5}$
2. Выполните умножение:
$(a + 5b) * \frac{8}{a^2 - 25b^2}$.
А) 8(a − 5b)
Б) 8(a + 5b)
В) $\frac{8}{a + 5b}$
Г) $\frac{8}{a - 5b}$
Решение:
$(a + 5b) * \frac{8}{a^2 - 25b^2} = (a + 5b) * \frac{8}{(a - 5b)(a + 5b)} = \frac{8}{a - 5b}$
Ответ: Г) $\frac{8}{a - 5b}$
3. Упростите выражение:
$\frac{b^2 - 6b + 9}{b - 7} * \frac{b - 7}{b - 3}$.
А) b + 3
Б) b − 3
В) $\frac{1}{b - 3}$
Г) $\frac{1}{b + 3}$
Решение:
$\frac{b^2 - 6b + 9}{b - 7} * \frac{b - 7}{b - 3} = \frac{(b - 3)^2}{b - 7} * \frac{b - 7}{b - 3} = \frac{b - 3}{1} * \frac{1}{1} = b - 3$
Ответ: Б) b − 3
4. Выполните деление:
$\frac{5a^6}{b^8} : (10a^3b^2)$.
А) $\frac{2a^9}{b^6}$
Б) $\frac{b^6}{2a^9}$
В) $\frac{2b^{10}}{a^3}$
Г) $\frac{a^3}{2b^{10}}$
Решение:
$\frac{5a^6}{b^8} : (10a^3b^2) = \frac{5a^6}{b^8} * \frac{1}{10a^3b^2} = \frac{a^3}{b^8} * \frac{1}{2b^2} = \frac{a^3}{2b^{10}}$
Ответ: Г) $\frac{a^3}{2b^{10}}$
5. Упростите выражение:
$\frac{3x + 9}{x^2 - 2x} : \frac{x + 3}{4x - 8}$.
А) $\frac{12}{x}$
Б) $\frac{x}{12}$
В) 12
Г) x
Решение:
$\frac{3x + 9}{x^2 - 2x} : \frac{x + 3}{4x - 8} = \frac{3(x + 3)}{x(x - 2)} : \frac{x + 3}{4(x - 2)} = \frac{3(x + 3)}{x(x - 2)} * \frac{4(x - 2)}{x + 3} = \frac{3}{x} * \frac{4}{1} = \frac{12}{x}$
Ответ: А) $\frac{12}{x}$
6. Представьте в виде дроби выражение
$\frac{n^2 - 3n}{64n^2 - 1} : \frac{n^4 - 27n}{64n^2 + 16n + 1}$.
А) $\frac{8n + 1}{(8n - 1)(n^2 + 3n + 9)}$
Б) $\frac{8n + 1}{(8n - 1)(n^2 - 3n + 9)}$
В) $\frac{8n - 1}{(8n + 1)(n^2 + 3n + 9)}$
Г) $\frac{8n - 1}{(8n + 1)(n^2 - 3n + 9)}$
Решение:
$\frac{n^2 - 3n}{64n^2 - 1} : \frac{n^4 - 27n}{64n^2 + 16n + 1} = \frac{n(n - 3)}{(8n - 1)(8n + 1)} : \frac{n(n^3 - 27)}{(8n + 1)^2} = \frac{n(n - 3)}{(8n - 1)(8n + 1)} : \frac{n(n - 3)(n^2 + 3n + 9)}{(8n + 1)^2} = \frac{n(n - 3)}{(8n - 1)(8n + 1)} * \frac{(8n + 1)^2}{n(n - 3)(n^2 + 3n + 9)} = \frac{1}{8n - 1} * \frac{8n + 1}{n^2 + 3n + 9} = \frac{8n + 1}{(8n - 1)(n^2 + 3n + 9)}$
Ответ: А) $\frac{8n + 1}{(8n - 1)(n^2 + 3n + 9)}$
7. Выполните возведение в степень: $(-\frac{2a^2}{b^3})^4$.
А) $\frac{8a^8}{b^{12}}$
Б) $-\frac{8a^8}{b^{12}}$
В) $\frac{16a^8}{b^{12}}$
Г) $-\frac{16a^8}{b^{12}}$
Решение:
$(-\frac{2a^2}{b^3})^4 = \frac{(2a^2)^4}{(b^3)^4} = \frac{2^4a^{2 * 4}}{b^{3 * 4}} = \frac{16a^{8}}{b^{12}}$
Ответ: В) $\frac{16a^8}{b^{12}}$
8. Упростите выражение $(\frac{1}{a - 6} - \frac{1}{a + 6}) : \frac{2}{a + 6}$.
А) $\frac{6}{a + 6}$
Б) $\frac{6}{a - 6}$
В) 6(a − 6)
Г) 6(a + 6)
Решение:
$(\frac{1}{a - 6} - \frac{1}{a + 6}) : \frac{2}{a + 6} = \frac{a + 6 - (a - 6)}{(a - 6)(a + 6)} * \frac{a + 6}{2} = \frac{a + 6 - a + 6}{a - 6} * \frac{1}{2} = \frac{12}{a - 6} * \frac{1}{2} = \frac{6}{a - 6} * \frac{1}{2} = \frac{6}{a - 6}$
Ответ: Б) $\frac{6}{a - 6}$
9. Какому числу при всех допустимых значениях a равно значение выражения $(\frac{30a}{9a^2 - 25} + \frac{5}{5 - 3a}) : (\frac{3a - 5}{3a + 5} - 1)$?
А) $\frac{1}{2}$
Б) 2
В) $-\frac{1}{2}$
Г) −2
Решение:
$(\frac{30a}{9a^2 - 25} + \frac{5}{5 - 3a}) : (\frac{3a - 5}{3a+ 5} - 1) = (\frac{30a}{(3a - 5)(3a + 5)} - \frac{5}{3a - 5}) : \frac{3a - 5 - (3a + 5)}{3a + 5} = \frac{30a - 5(3a + 5)}{(3a - 5)(3a + 5)} : \frac{3a - 5 - 3a - 5}{3a + 5} = \frac{30a - 15a - 25}{(3a - 5)(3a + 5)} : \frac{-10}{3a + 5} = \frac{15a - 25}{(3a - 5)(3a + 5)} * (-\frac{3a + 5}{10}) = \frac{5(3a - 5)}{3a - 5} * (-\frac{1}{10}) = -\frac{5}{10} = -\frac{1}{2}$
Ответ: В) $-\frac{1}{2}$
10. Чему равно значение выражения $\frac{a^2 - 4ab}{b^2}$, если 3a − 5b = 0,2(2a + b)?
А) 4
Б) −4
В) 3
Г) −3
Решение:
3a − 5b = 0,2(2a + b)
3a − 5b = 0,4a + 0,2b
3a − 0,4a = 5b + 0,2b
2,6a = 5,2b
a = 2b
Тогда:
$\frac{a^2 - 4ab}{b^2} = \frac{(2b)^2 - 4 * 2b * b}{b^2} = \frac{4b^2 - 8b^2}{b^2} = \frac{-4b^2}{b^2} = -4$
Ответ: Б) −4
11. Известно, что $x + \frac{1}{x} = 6$. Найдите значение выражения $x^2 + \frac{1}{x^2}$
А) 36
Б) 38
В) 34
Г) 35
Решение:
$x^2 + \frac{1}{x^2} = x^2 + (\frac{1}{x})^2 = (x^2 + 2x * \frac{1}{x} + \frac{1}{x^2}) - 2x * \frac{1}{x} = (x + \frac{1}{x})^2 - 2$
$x + \frac{1}{x} = 6$, тогда:
$(x + \frac{1}{x})^2 - 2 = 6^2 - 2 = 36 - 2 = 34$
Ответ: В) 34
12. Упростите выражение $\frac{\frac{1}{a} + \frac{a}{b^2}}{\frac{a}{b^2} - \frac{1}{a}}$.
А) $\frac{a^2 + b^2}{a^2 - b^2}$
Б) $\frac{a^2 - b^2}{a^2 + b^2}$
В) $\frac{a^2 + b^2}{ab^2(a^2 - b^2)}$
Г) $\frac{ab(a^2 + b^2)}{a^2 - b^2}$
Решение:
$\frac{\frac{1}{a} + \frac{a}{b^2}}{\frac{a}{b^2} - \frac{1}{a}} = \frac{\frac{b^2 + a^2}{ab^2}}{\frac{a^2 - b^2}{ab^2}} = \frac{a^2 + b^2}{a^2 - b^2}$
Ответ: А) $\frac{a^2 + b^2}{a^2 - b^2}$