Ответы к странице 102

398. Найдите значение выражения:
1) $0,15\sqrt{3600} - 0,18\sqrt{400} + (10\sqrt{0,08})^2$;
2) $\frac{95}{\sqrt{361}} - \frac{13}{14}\sqrt{1\frac{27}{169}} + \sqrt{8^2 + 15^2}$;
3) $(-8\sqrt{\frac{1}{4}} + \frac{\sqrt{1,44}}{3} * \sqrt{12,25}) : (0,1\sqrt{13})^2$.

Решение:

1) $0,15\sqrt{3600} - 0,18\sqrt{400} + (10\sqrt{0,08})^2 = 0,15 * 60 - 0,18 * 20 + 10^2 * (\sqrt{0,08})^2 = 9 - 3,6 + 100 * 0,08 = 5,4 + 8 = 13,4$

2) $\frac{95}{\sqrt{361}} - \frac{13}{14}\sqrt{1\frac{27}{169}} + \sqrt{8^2 + 15^2} = \frac{95}{19} - \frac{13}{14} * \sqrt{\frac{196}{169}} + \sqrt{64 + 225} = 5 - \frac{13}{14} * \frac{14}{13} + \sqrt{289} = 5 - 1 + 17 = 4 + 17 = 21$

3) $(-8\sqrt{\frac{1}{4}} + \frac{\sqrt{1,44}}{3} * \sqrt{12,25}) : (0,1\sqrt{13})^2 = (-8 * \frac{1}{2} + \frac{1,2}{3} * 3,5) : (0,1^2 * (\sqrt{13})^2) = (-4 + 0,4 * 3,5) : (0,01 * 13) = (-4 + 1,4) : 0,13 = -2,6 : 0,13 = -20$

399. При каких значениях x имеет смысл выражение:
1) $\sqrt{x}$;
2) $\sqrt{-x}$;
3) $\sqrt{x^2}$;
4) $\sqrt{-x^2}$;
5) $\sqrt{x - 8}$;
6) $\sqrt{8 - x}$;
7) $\sqrt{x^2 + 8}$;
8) $\sqrt{(x - 8)^2}$;
9) $\frac{1}{\sqrt{(x - 8)^2}}$;
10) $\frac{1}{\sqrt{x} - 3}$;
11) $\frac{1}{\sqrt{x} + 3}$;
12) $\sqrt{x} * \sqrt{-x}$;
13) $\frac{1}{\sqrt{x} * \sqrt{-x}}$;
14) $\sqrt{|x|}$;
15) $\sqrt{-|x|}$;
16) $\frac{1}{\sqrt{|x|}}$?

Решение:

1) $\sqrt{x}$
имеет смысл при x ≥ 0

2) $\sqrt{-x}$
имеет смысл при x ≤ 0

3) $\sqrt{x^2}$
имеет смысл при любом значении x

4) $\sqrt{-x^2}$
имеет смысл при x = 0

5) $\sqrt{x - 8}$
x − 8 ≥ 0
x ≥ 8
имеет смысл при x ≥ 8

6) $\sqrt{8 - x}$
8 − x ≥ 0
−x ≥ −8
x ≤ 8
имеет смысл при x ≤ 8

7) $\sqrt{x^2 + 8}$
имеет смысл при любом значении x

8) $\sqrt{(x - 8)^2}$
имеет смысл при любом значении x

9) $\frac{1}{\sqrt{(x - 8)^2}}$
$\sqrt{(x - 8)^2} ≠ 0$
x − 8 ≠ 0
x ≠ 8
имеет смысл при любом x, кроме x = 8

10) $\frac{1}{\sqrt{x} - 3}$
$\sqrt{x} - 3 ≠ 0$
$\sqrt{x} ≠ 3$
$(\sqrt{x})^2 ≠ 3^2$
x ≠ 9
имеет смысл при x ≥ 0, кроме x = 9

11) $\frac{1}{\sqrt{x} + 3}$
имеет смысл при x ≥ 0

12) $\sqrt{x} * \sqrt{-x}$
имеет смысл при x = 0

13) $\frac{1}{\sqrt{x} * \sqrt{-x}}$
не имеет смысл ни при каких x

14) $\sqrt{|x|}$
имеет смысл при любом значении x

15) $\sqrt{-|x|}$
имеет смысл ни при x = 0

16) $\frac{1}{\sqrt{|x|}}$
$|x| ≠ 0$
x ≠ 0
имеет смысл при любом x, кроме x = 0

400. При каких значениях y имеет смысл выражение:
1) $\sqrt{2y}$;
2) $\sqrt{-3y}$;
3) $\sqrt{y^3}$;
4) $\sqrt{-y^3}$;
5) $\sqrt{-y^4}$;
6) $\frac{1}{\sqrt{y}}$;
7) $\frac{1}{\sqrt{y} - 1}$;
8) $\frac{1}{\sqrt{y} + 1}$?

Решение:

1) $\sqrt{2y}$
имеет смысл при y ≥ 0

2) $\sqrt{-3y}$
имеет смысл при y ≤ 0

3) $\sqrt{y^3}$
имеет смысл при y ≥ 0

4) $\sqrt{-y^3}$
имеет смысл при y ≤ 0

5) $\sqrt{-y^4}$
имеет смысл при y = 0

6) $\frac{1}{\sqrt{y}}$
$\sqrt{y} ≠ 0$
y ≠ 0
имеет смысл при y > 0

7) $\frac{1}{\sqrt{y} - 1}$
$\sqrt{y} - 1 ≠ 0$
$\sqrt{y} ≠ 1$
$(\sqrt{y})^2 ≠ 1^2$
y ≠ 1
имеет смысл при y ≥ 0, кроме y = 1

8) $\frac{1}{\sqrt{y} + 1}$
имеет смысл при y ≥ 0

401. Решите уравнение:
1) $\sqrt{5x} - 4 = 0$;
2) $\sqrt{5x - 4} = 0$;
3) $\sqrt{5x - 4} = 6$;
4) $\frac{42}{\sqrt{x}} = 6$;
5) $\frac{18}{\sqrt{x + 3}} = 9$;
6) $\sqrt{x^2 - 36} = 8$.

Решение:

1) $\sqrt{5x} - 4 = 0$
имеет смысл при x ≥ 0

$\sqrt{5x} = 4$
$(\sqrt{5x})^2 = 4^2$
5x = 16
x = 3,2
3,2 ≥ 0
Ответ: 3,2

2) $\sqrt{5x - 4} = 0$
имеет смысл при:
5x − 4 ≥ 0
5x ≥ 4
x ≥ 0,8

5x − 4 = 0
5x = 4
x = 0,8
0,8 ≥ 0,8
Ответ: 0,8

3) $\sqrt{5x - 4} = 6$
имеет смысл при:
5x − 4 ≥ 0
5x ≥ 4
x ≥ 0,8

$(\sqrt{5x - 4})^2 = 6^2$
5x − 4 = 36
5x = 36 + 4
5x = 40
x = 8
8 ≥ 0,8
Ответ: 8

4) $\frac{42}{\sqrt{x}} = 6$
имеет смысл при x ≥ 0

$(\frac{42}{\sqrt{x}})^2 = 6^2$
$\frac{1764}{x} = 36$
$x = \frac{1764}{36}$
x = 49
49 ≥ 0
Ответ: 49

5) $\frac{18}{\sqrt{x + 3}} = 9$
имеет смысл при:
x + 3 > 0
x > −3

$(\frac{18}{\sqrt{x + 3}})^2 = 9^2$
$\frac{324}{x + 3} = 81$
$x + 3 = \frac{324}{81}$
x + 3 = 4
x = 4 − 3
x = 1
1 > −3
Ответ: 1

6) $\sqrt{x^2 - 36} = 8$
имеет смысл при:
$x^2 - 36 ≥ 0$

$(\sqrt{x^2 - 36})^2 = 8^2$
$x^2 - 36 = 64$
$x^2 = 64 + 36$
$x^2 = 100$
x = ±10
$(±10)^2 - 36 ≥ 0$
100 − 36 ≥ 0
64 ≥ 0
Ответ: x = −10 и x = 10

402. Решите уравнение:
1) $\frac{1}{3}\sqrt{x} - 2 = 0$;
2) $\sqrt{2x + 3} = 11$;
3) $\frac{4}{\sqrt{x - 5}} = 6$;
4) $\sqrt{130 - x^2} = 9$.

Решение:

1) $\frac{1}{3}\sqrt{x} - 2 = 0$
имеет смысл при x ≥ 0

$\frac{1}{3}\sqrt{x} = 2$
$(\frac{1}{3}\sqrt{x})^2 = 2^2$
$\frac{1}{9}x = 4$
x = 4 * 9
x = 36
36 ≥ 0
Ответ: 36

2) $\sqrt{2x + 3} = 11$
имеет смысл при:
2x + 3 ≥ 0
2x ≥ −3
x ≥ −1,5

$(\sqrt{2x + 3})^2 = 11^2$
2x + 3 = 121
2x = 121 − 3
2x = 118
x = 59
59 ≥ −1,5
Ответ: 59

3) $\frac{4}{\sqrt{x - 5}} = 6$
имеет смысл при:
x − 5 > 0
x > 5

$(\frac{4}{\sqrt{x - 5}})^2 = 6^2$
$\frac{16}{x - 5} = 36$
$x - 5 = \frac{16}{36}$
$x = \frac{4}{9} + 5$
$x = 5\frac{4}{9}$
$5\frac{4}{9} - 5 > 0$
$\frac{4}{9} > 0$
Ответ: $5\frac{4}{9}$

4) $\sqrt{130 - x^2} = 9$
имеет смысл при:
$130 - x^2 ≥ 0$

$(\sqrt{130 - x^2})^2 = 9^2$
$130 - x^2 = 81$
$x^2 = 130 - 81$
$x^2 = 49$
x = ±7
$130 - (±7)^2 ≥ 0$
$130 - 49 ≥ 0$
$81 ≥ 0$
Ответ: −7 и 7

403. Решите уравнение:
1) $(x + 6)^2 = 0$;
2) $(x + 6)^2 = 9$;
3) $(x + 6)^2 = 3$;
4) $(7x + 6)^2 = 5$.

Решение:

1) $(x + 6)^2 = 0$
x + 6 = 0
x = −6
Ответ: −6

2) $(x + 6)^2 = 9$
$(x + 6)^2 = (±3)^2$
x + 6 = −3
x = −3 − 6
x = −9
или
x + 6 = 3
x = 3 − 6
x = −3
Ответ: −9 и −3

3) $(x + 6)^2 = 3$
$x + 6 = ±\sqrt{3}$
$x + 6 = \sqrt{3}$
$x = \sqrt{3} - 6$
или
$x + 6 = -\sqrt{3}$
$x = -\sqrt{3} - 6$
Ответ: $-\sqrt{3} - 6$ и $\sqrt{3} - 6$

4) $(7x + 6)^2 = 5$
$7x + 6 = ±\sqrt{5}$
$7x + 6 = \sqrt{5}$
$7x = \sqrt{5} - 6$
$x = \frac{\sqrt{5} - 6}{7}$
или
$7x + 6 = -\sqrt{5}$
$7x = -\sqrt{5} - 6$
$x = \frac{-\sqrt{5} - 6}{7}$
Ответ: $\frac{-\sqrt{5} - 6}{7}$ и $\frac{\sqrt{5} - 6}{7}$

404. Решите уравнение:
1) $(2x - 3)^2 = 25$;
2) $(x - 3)^2 = 7$;
3) $(2x - 3)^2 = 7$.

Решение:

1) $(2x - 3)^2 = 25$
$(2x - 3)^2 = (±5)^2$
2x − 3 = −5
2x = −5 + 3
2x = −2
x = −1
или
2x − 3 = 5
2x = 5 + 3
2x = 8
x = 4
Ответ: −1 и 4

2) $(x - 3)^2 = 7$
$x - 3 = ±\sqrt{7}$
$x - 3 = -\sqrt{7}$
$x = -\sqrt{7} + 3$
или
$x - 3 = \sqrt{7}$
$x = \sqrt{7} + 3$
Ответ: $-\sqrt{7} + 3$ и $\sqrt{7} + 3$

3) $(2x - 3)^2 = 7$
$2x - 3 = ±\sqrt{7}$
$2x - 3 = -\sqrt{7}$
$2x = -\sqrt{7} + 3$
$x = \frac{-\sqrt{7} + 3}{2}$
или
$2x - 3 = \sqrt{7}$
$2x = \sqrt{7} + 3$
$x = \frac{\sqrt{7} + 3}{2}$
Ответ: $\frac{-\sqrt{7} + 3}{2}$ и $\frac{\sqrt{7} + 3}{2}$

405. Решите уравнение:
1) $\sqrt{3 + \sqrt{2 + x}} = 4$;
2) $\sqrt{2 + \sqrt{3 + \sqrt{x}}} = 3$;
3) $\sqrt{4 - \sqrt{10 + \sqrt{x}}} = 2$.

Решение:

1) $\sqrt{3 + \sqrt{2 + x}} = 4$
имеет смысл при:
2 + x ≥ 0
x ≥ −2
$(\sqrt{3 + \sqrt{2 + x}})^2 = 4^2$
$3 + \sqrt{2 + x} = 16$
$\sqrt{2 + x} = 16 - 3$
$\sqrt{2 + x} = 13$
$(\sqrt{2 + x})^2 = 13^2$
2 + x = 169
x = 169 − 2
x = 167
167 ≥ −2
Ответ: 167

2) $\sqrt{2 + \sqrt{3 + \sqrt{x}}} = 3$
имеет смысл при:
x ≥ 0
$(\sqrt{2 + \sqrt{3 + \sqrt{x}}})^2 = 3^2$
$2 + \sqrt{3 + \sqrt{x}} = 9$
$\sqrt{3 + \sqrt{x}} = 9 - 2$
$\sqrt{3 + \sqrt{x}} = 7$
$(\sqrt{3 + \sqrt{x}})^2 = 7^2$
$3 + \sqrt{x} = 49$
$\sqrt{x} = 49 - 3$
$\sqrt{x} = 46$
$(\sqrt{x})^2 = 46^2$
x = 2116
2116 ≥ 0
Ответ: 2116

3) $\sqrt{4 - \sqrt{10 + \sqrt{x}}} = 2$
имеет смысл при:
x ≥ 0
$(\sqrt{4 - \sqrt{10 + \sqrt{x}}})^2 = 2^2$
$4 - \sqrt{10 + \sqrt{x}} = 4$
$-\sqrt{10 + \sqrt{x}} = 4 - 4$
$-\sqrt{10 + \sqrt{x}} = 0$
$\sqrt{10 + \sqrt{x}} = 0$
$10 + \sqrt{x} = 0$
$\sqrt{x} = -10$ − нет корней
Ответ: нет корней