Ответы к странице 40

161. Найдите значение выражения:
1) $\frac{1}{a^2 - ab} : \frac{b}{b^2 - a^2}$, если $a = 2\frac{1}{3}, b = -\frac{3}{7}$;
2) $\frac{a^2 + 4ab + 4b^2}{a^2 - 9b^2} : \frac{3a + 6b}{2a - 6b}$, если a = 4, b = −5.

Решение:

1) $\frac{1}{a^2 - ab} : \frac{b}{b^2 - a^2} = \frac{1}{a(a - b)} : \frac{b}{(b - a)(b + a)} = \frac{1}{a(a - b)} : (-\frac{b}{(a - b)(a + b)}) = \frac{1}{a(a - b)} * (-\frac{(a - b)(a + b)}{b}) = \frac{1}{a} * (-\frac{a + b}{b}) = -\frac{a + b}{ab}$
при $a = 2\frac{1}{3}, b = -\frac{3}{7}$:
$-\frac{2\frac{1}{3} - \frac{3}{7}}{2\frac{1}{3} * (-\frac{3}{7})} = \frac{\frac{7}{3} - \frac{3}{7}}{\frac{7}{3} * \frac{3}{7}} = \frac{\frac{49 - 9}{21}}{\frac{1}{1} * \frac{1}{1}} = \frac{40}{21} = 1\frac{19}{21}$

2) $\frac{a^2 + 4ab + 4b^2}{a^2 - 9b^2} : \frac{3a + 6b}{2a - 6b} = \frac{(a + 2b)^2}{(a - 3b)(a + 3b)} : \frac{3(a + 2b)}{2(a - 3b)} = \frac{(a + 2b)^2}{(a - 3b)(a + 3b)} * \frac{2(a - 3b)}{3(a + 2b)} = \frac{a + 2b}{a + 3b} * \frac{2}{3} = \frac{2(a + 2b)}{3(a + 3b)}$
при a = 4, b = −5:
$\frac{2(a + 2b)}{3(a + 3b)} = \frac{2(4 + 2 * (-5))}{3(4 + 3 * (-5))} = \frac{2(4 - 10)}{3(4 - 15)} = \frac{2 * (-6)}{3 * (-11)} = \frac{2 * (-2)}{-11} = \frac{-4}{-11} = \frac{4}{11}$

162. Известно, что $x - \frac{1}{x} = 9$. Найдите значение выражения $x^2 + \frac{1}{x^2}$.

Решение:

$x - \frac{1}{x} = 9$
$(x - \frac{1}{x})^2 = 9^2$
$(x - \frac{1}{x})^2 = 81$
$x^2 - 2x * \frac{1}{x} + \frac{1}{x^2} = 81$
$x^2 - 2 + \frac{1}{x^2} = 81$
$x^2 + \frac{1}{x^2} = 81 + 2$
$x^2 + \frac{1}{x^2} = 83$
Ответ: 83

163. Известно, что $3x + \frac{1}{x} = -4$. Найдите значение выражения $9x^2 + \frac{1}{x^2}$.

Решение:

$3x + \frac{1}{x} = -4$
$(3x + \frac{1}{x})^2 = (-4)^2$
$(3x + \frac{1}{x})^2 = 16$
$9x^2 + 6x * \frac{1}{x} + \frac{1}{x^2} = 16$
$9x^2 + 6 + \frac{1}{x^2} = 16$
$9x^2 + \frac{1}{x^2} = 16 - 6$
$9x^2 + \frac{1}{x^2} = 10$
Ответ: 10

164. Дано: $x^2 + \frac{16}{x^2} = 41$. Найдите значение выражения $x + \frac{4}{x}$.

Решение:

$x^2 + \frac{16}{x^2} = 41$
$x^2 + (\frac{4}{x})^2 = 41$
$(x^2 + 2x * \frac{4}{x} + (\frac{4}{x})^2) - 2x * \frac{4}{x} = 41$
$(x + \frac{4}{x})^2 - 8 = 41$
$(x + \frac{4}{x})^2 = 41 + 8$
$(x + \frac{4}{x})^2 = 49$
$x + \frac{4}{x} = ±7$
Ответ: ±7

165. Дано: $x^2 + \frac{1}{x^2} = 6$. Найдите значение выражения $x - \frac{1}{x}$.

Решение:

$x^2 + \frac{1}{x^2} = 6$
$x^2 + (\frac{1}{x})^2 = 6$
$(x^2 - 2x * \frac{1}{x} + (\frac{1}{x})^2) + 2x * \frac{1}{x} = 6$
$(x - \frac{1}{x})^2 + 2 = 6$
$(x - \frac{1}{x})^2 = 6 - 2$
$(x - \frac{1}{x})^2 = 4$
$x - \frac{1}{x} = ±2$
Ответ: ±2

166. Упростите выражение:
1) $\frac{a^2 - 36}{a^2 + ab - 6a - 6b} : \frac{a^2 + ab + 6a + 6b}{a^2 + 2ab + b^2}$;
2) $\frac{a^2 + a - ab - b}{a^2 + a + ab + b} : \frac{a^2 - a - ab + b}{a^2 - a + ab - b}$.

Решение:

1) $\frac{a^2 - 36}{a^2 + ab - 6a - 6b} : \frac{a^2 + ab + 6a + 6b}{a^2 + 2ab + b^2} = \frac{(a - 6)(a + 6)}{(a^2 + ab) - (6a + 6b)} : \frac{(a^2 + ab) + (6a + 6b)}{(a + b)^2} = \frac{(a - 6)(a + 6)}{a(a + b) - 6(a + b)} : \frac{a(a + b) + 6(a + b)}{(a + b)^2} = \frac{(a - 6)(a + 6)}{(a + b)(a - 6)} : \frac{(a + b)(a + 6)}{(a + b)^2} = \frac{a + 6}{a + b} : \frac{a + 6}{a + b} = \frac{a + 6}{a + b} * \frac{a + b}{a + 6} = \frac{1}{1} * \frac{1}{1} = 1$

2) $\frac{a^2 + a - ab - b}{a^2 + a + ab + b} : \frac{a^2 - a - ab + b}{a^2 - a + ab - b} = \frac{(a^2 + a) - (ab + b)}{(a^2 + a) + (ab + b)} : \frac{(a^2 - a) - (ab - b)}{(a^2 - a) + (ab - b)} = \frac{a(a + 1) - b(a + 1)}{a(a + 1) + b(a + 1)} : \frac{a(a - 1) - b(a - 1)}{a(a - 1) + b(a - 1)} = \frac{(a + 1)(a - b)}{(a + 1)(a + b)} : \frac{(a - 1)(a - b)}{(a - 1)(a + b)} = \frac{a - b}{a + b} : \frac{a - b}{a + b} = \frac{a - b}{a + b} * \frac{a + b}{a - b} = \frac{1}{1} * \frac{1}{1} = 1$

167. Упростите выражение:
1) $\frac{25 - 5a + 5b - ab}{25 + 5a - 5b - ab} * \frac{ab - 5a - 5b + 25}{ab + 5a + 5b + 25}$;
2) $\frac{a^2 - 2ab + b^2}{a^2 - ab - 4a + 4b} : \frac{a^2 - ab + 4a - 4b}{a^2 - 16}$.

Решение:

1) $\frac{25 - 5a + 5b - ab}{25 + 5a - 5b - ab} * \frac{ab - 5a - 5b + 25}{ab + 5a + 5b + 25} = \frac{(25 - 5a) + (5b - ab)}{(25 + 5a) - (5b + ab)} * \frac{(ab - 5a) - (5b - 25)}{(ab + 5a) + (5b + 25)} = \frac{5(5 - a) + b(5 - a)}{5(5 + a) - b(5 + a)} * \frac{a(b - 5) - 5(b - 5)}{a(b + 5) + 5(b + 5)} = \frac{(5 - a)(5 + b)}{(5 + a)(5 - b)} * \frac{(b - 5)(a - 5)}{(b + 5)(a + 5)} = \frac{5 - a}{(5 + a)(5 - b)} * \frac{(b - 5)(a - 5)}{a + 5} = -\frac{5 - a}{(5 + a)(b - 5)} * \frac{(b - 5)(a - 5)}{a + 5} = -\frac{5 - a}{5 + a} * \frac{a - 5}{a + 5} = \frac{a - 5}{a + 5} * \frac{a - 5}{a + 5} = \frac{(a - 5)^2}{(a + 5)^2}$

2) $\frac{a^2 - 2ab + b^2}{a^2 - ab - 4a + 4b} : \frac{a^2 - ab + 4a - 4b}{a^2 - 16} = \frac{(a - b)^2}{(a^2 - ab) - (4a - 4b)} : \frac{(a^2 - ab) + (4a - 4b)}{(a - 4)(a + 4)} = \frac{(a - b)^2}{a(a - b) - 4(a - b)} : \frac{a(a - b) + 4(a - b)}{(a - 4)(a + 4)} = \frac{(a - b)^2}{(a - b)(a - 4)} : \frac{(a - b)(a + 4)}{(a - 4)(a + 4)} = \frac{a - b}{a - 4} : \frac{a - b}{a - 4} = \frac{a - b}{a - 4} * \frac{a - 4}{a - b} = \frac{1}{1} * \frac{1}{1} = 1$

168. Докажите тождество:
$\frac{8a^2}{a - 3b} : \frac{6a^3}{a^2 - 9b^2} * \frac{3a}{4a + 12b} = 1$.

Решение:

$\frac{8a^2}{a - 3b} : \frac{6a^3}{a^2 - 9b^2} * \frac{3a}{4a + 12b} = 1$
$\frac{8a^2}{a - 3b} : \frac{6a^3}{(a - 3b)(a + 3b)} * \frac{3a}{4(a + 3b)} = 1$
$\frac{8a^2}{a - 3b} * \frac{(a - 3b)(a + 3b)}{6a^3} * \frac{3a}{4(a + 3b)} = 1$
$\frac{1}{1} * \frac{1}{1} * \frac{1}{1} = 1$
1 = 1

169. Докажите тождество:
$\frac{a^2 + a}{2a - 12} * \frac{6a + 6}{2a + 12} : \frac{9a^3 + 18a^2 + 9a}{a^2 - 36} = \frac{1}{6}$

Решение:

$\frac{a^2 + a}{2a - 12} * \frac{6a + 6}{2a + 12} : \frac{9a^3 + 18a^2 + 9a}{a^2 - 36} = \frac{1}{6}$
$\frac{a(a + 1)}{2(a - 6)} * \frac{6(a + 1)}{2(a + 6)} : \frac{9a(a^2 + 2a + 1)}{(a - 6)(a + 6)} = \frac{1}{6}$
$\frac{a(a + 1)}{2(a - 6)} * \frac{3(a + 1)}{a + 6} : \frac{9a(a + 1)^2}{(a - 6)(a + 6)} = \frac{1}{6}$
$\frac{a(a + 1)}{2(a - 6)} * \frac{3(a + 1)}{a + 6} * \frac{(a - 6)(a + 6)}{9a(a + 1)^2} = \frac{1}{6}$
$\frac{1}{2} * \frac{1}{1} * \frac{1}{3} = \frac{1}{6}$
$\frac{1}{6} = \frac{1}{6}$

170. Решите уравнение:
1) $(2x + 3)^2 - 2x(5 + 2x) = 10$;
2) (x − 2)(x − 3) − (x − 6)(x + 1) = 12.

Решение:

1) $(2x + 3)^2 - 2x(5 + 2x) = 10$
$4x^2 + 12x + 9 - 10x - 4x^2 = 10$
12x − 10x = 10 − 9
2x = 1
$x = \frac{1}{2}$
Ответ: $\frac{1}{2}$

2) (x − 2)(x − 3) − (x − 6)(x + 1) = 12
$x^2 - 2x - 3x + 6 - (x^2 - 6x + x - 6) = 12$
$x^2 - 5x + 6 - x^2 + 6x - x + 6 = 12$
0x = 12 − 12
0x = 0
0 = 0
Ответ: x − любое число

171. Докажите, что уравнение $\frac{2x + 1}{3} - \frac{x - 4}{2} = \frac{x + 5}{6}$ не имеет корней.

Решение:

$\frac{2x + 1}{3} - \frac{x - 4}{2} = \frac{x + 5}{6}$|* 6
2(2x + 1) − 3(x − 4) = x + 5
4x + 2 − 3x + 12 = x + 5
x − x = 5 − 2 − 12
0x = −9
0 ≠ −9
Ответ: уравнение не имеет корней

172. Из пункта A в пункт B, расстояние между которыми равно 192 км, со скоростью 60 км/ч выехал мотоциклист. Через 30 мин навстречу ему из пункта B со скоростью 75 км/ч выехал второй мотоциклист. Сколько времени ехал второй мотоциклист до встречи с первым?

Решение:

30 мин = $\frac{30}{60}$ ч = $\frac{1}{2}$ ч
Пусть x (ч) − ехал второй мотоциклист до встречи с первым, тогда:

                                 t       v         S
Мотоциклист №1 $x + \frac{1}{2}$ ч 60 км/ч $60(x + \frac{1}{2})$ км
Мотоциклист №2 x ч 75 км/ч 75x км

Так как, суммарно до встречи мотоциклисты проехали 192 км, составим уравнение:
$60(x + \frac{1}{2}) + 75x = 192$
60x + 30 + 75x = 192
135x = 192 − 30
135x = 162
$x = \frac{162}{135} = \frac{6}{5} = 1\frac{1}{5} = 1\frac{12}{60}$ (ч) = 1 ч 12 минут ехал второй мотоциклист до встречи с первым.
Ответ: 1 ч 12 мин.