Ответы к странице 123
484. Истинным или ложным является высказывание:
1) сумма двух иррациональных чисел является числом иррациональным;
2) произведение любых двух иррациональных чисел является числом иррациональным;
3) произведение любого иррационального числа и любого рационального числа является число иррациональным?
Решение:
1) Высказывание ложное, так как например:
$\sqrt{5} + (-\sqrt{5}) = \sqrt{5} - \sqrt{5} = 0$ − число рациональное
2) Высказывание ложное, так как например:
$\sqrt{5} * \sqrt{5} = (\sqrt{5})^2 = 5$ − число рациональное
Решение e
Высказывание ложное, так как например:
$\sqrt{5} * 0 = 0$ − число рациональное
485. В каждом подъезде на каждом этаже девятиэтажного дома по восемь квартир. В каком подъезде и на каком этаже находится квартира № 186?
Решение:
1) 8 * 9 = 72 (квартиры) − находится в каждом подъезде;
2) $\frac{186}{72} = 2\frac{42}{72}$ − значит квартира № 186 находится в третьем подъезде и является 42−ой по счету;
3) $\frac{42}{8} = 5\frac{2}{8}$ − значит квартира № 186 находится на шестом этаже.
Ответ: квартира № 186 находится в третьем подъезде на шестом этаже.
486. Натуральные числа a и b таковы, что a − четное число, a b − нечетное. Значение какого из данных выражений не может быть натуральным числом:
1) $\frac{8b}{5a}$;
2) $\frac{a^2}{b^2}$;
3) $\frac{4a}{b}$;
4) $\frac{b^2}{a}$?
Решение:
Пусть:
a = 2n
b = 2m + 1
Тогда:
1)
$\frac{8b}{5a} = \frac{8(2m + 1)}{5 * 2n} = \frac{16m + 8}{10n} = \frac{2 * (8m + 4)}{2 * 5n} = \frac{8m + 4}{5n}$
при m = 2 и n = 2:
$\frac{8 * 2 + 4}{5 * 2} = \frac{20}{10} = 2$ − число натуральное.
2)
$\frac{a^2}{b^2} = \frac{(2n)^2}{(2m + 1)^2} = \frac{4n^2}{4m^2 + 4m + 1}$
при m = 0 n = 1:
$\frac{4 * 1^2}{4 * 0^2 + 4 * 0 + 1} = \frac{4}{1} = 4$ − число натуральное.
3)
$\frac{4a}{b} = \frac{4 * 2n}{2m + 1} = \frac{8n}{2m + 1}$
при m = 0 n = 1:
$\frac{8 * 1}{2 * 0 + 1} = \frac{8}{1} = 8$ − число натуральное.
4)
$\frac{b^2}{a} = \frac{(2m + 1)^2}{2n} = \frac{4m^2 + 4m + 1}{2n} = \frac{4m^2}{2n} + \frac{4m}{2n} + \frac{1}{2n} = \frac{2m^2}{n} + \frac{2m}{n} + \frac{1}{2n}$ − так как при любых значениях m и n число $\frac{1}{2n}$ всегда будет не натуральным, значит и сумма $\frac{2m^2}{n} + \frac{2m}{n} + \frac{1}{2n}$ всегда будет числом не натуральным. Следовательно значение $\frac{b^2}{a}$ не может быть натуральным числом.
Ответ: 4) $\frac{b^2}{a}$
487. Докажите, что при всех допустимых значениях переменной значение выражения
$(\frac{3}{4 - 4a + a^2} + \frac{2}{a^2 - 4}) * (a - 2)^2 - \frac{2a - 4}{a + 2}$
не зависит от значения a.
Решение:
$(\frac{3}{4 - 4a + a^2} + \frac{2}{a^2 - 4}) * (a - 2)^2 - \frac{2a - 4}{a + 2} = (\frac{3}{a^2 - 4a + 4} + \frac{2}{a^2 - 4}) * (a - 2)^2 - \frac{2a - 4}{a + 2} = (\frac{3}{(a - 2)^2} + \frac{2}{(a - 2)(a + 2)}) * (a - 2)^2 - \frac{2a - 4}{a + 2} = \frac{3(a + 2) + 2(a - 2)}{(a - 2)^2(a + 2)} * (a - 2)^2 - \frac{2a - 4}{a + 2} = \frac{3a + 6 + 2a - 4}{a + 2} - \frac{2a - 4}{a + 2} = \frac{5a + 2}{a + 2} - \frac{2a - 4}{a + 2} = \frac{5a + 2 - (2a - 4)}{a + 2} = \frac{5a + 2 - 2a + 4}{a + 2} = \frac{3a + 6}{a + 2} = \frac{3(a + 2)}{a + 2} = 3$
488. В ведре несколько литров воды. Если отлить половину воды, то в нем останется на 14 л воды меньше, чем помещается. Если долить 4 л, то объем воды составит $\frac{2}{3}$ того, что помещается в ведре. Сколько литров воды помещается в ведре?
Решение:
Пусть x (л) − воды налито в ведро, тогда:
$\frac{1}{2}x$ (л) − воды останется в ведре, после того как отлили половину;
$\frac{1}{2}x + 14$ (л) − воды помещается в ведре;
x + 4 (л) − воды станет в ведре, после того как долили 4 литра;
$(x + 4) : \frac{2}{3}$ (л) − воды помещается в ведре.
Так как, вместимость ведра величина неизменная, можно составить уравнение:
$\frac{1}{2}x + 14 = (x + 4) : \frac{2}{3}$
$\frac{1}{2}x + 14 = (x + 4) * \frac{3}{2}$
$\frac{1}{2}x + 14 = \frac{3}{2}x + \frac{3}{2} * 4$
$\frac{1}{2}x + 14 = \frac{3}{2}x + 3 * 2$
$\frac{1}{2}x + 14 = \frac{3}{2}x + 6$
$\frac{1}{2}x - \frac{3}{2}x = 6 - 14$
$-\frac{2}{2}x = -8$
−x = −8
x = 8
$\frac{1}{2}x + 14 = \frac{1}{2} * 8 + 14 = 4 + 14 = 18$ (л) − воды помещается в ведре.
Ответ: 18 литров
489. Найдите значение выражения:
1) |−3,5| − |2,6|;
2) |−9,6| − |−32|.
Решение:
1) |−3,5| − |2,6| = 3,5 − 2,6 = 0,9
2) |−9,6| − |−32| = 9,6 − 32 = −22,4
490. Модуль какого числа равен 6?
Решение:
|−6| = 6
|6| = 6
Ответ: −6 и 6
491. Для каких чисел выполняется равенство:
1) |a| = a;
2) |a| = −a;
3) |a| = |−a|;
4) |a| = −|a|?
Решение:
1) |a| = a
при a ≥ 0
2) |a| = −a
при a ≤ 0
3) |a| = |−a|
при любом a
4) |a| = −|a|
при a = 0
492. Для каких чисел одновременно выполняются оба равенства |a| = a и |a| = −a?
Решение:
Равенства |a| = a и |a| = −a выполняются одновременно при a = 0.
493. Найдите значение каждого их выражений $a^2, (-a)^2, |a|^2$ при a = −8 и при a = 7. Сделайте вывод.
Решение:
при a = −8:
$a^2 = (-8)^2 = 64$
$(-a)^2 = (-(-8))^2 = 8^2 = 64$
$|a|^2 = |-8|^2 = 8^2 = 64$
при a = 7:
$a^2 = 7^2 = 49$
$(-a)^2 = (-7)^2 = 49$
$|a|^2 = |7|^2 = 7^2 = 49$
Вывод: при любом значении a выполняется равенство $a^2 = (-a)^2 = |a|^2$